论文标题

使用洛拉网络中的机器学习的基于RSSI指纹的本地化

RSSI Fingerprinting-based Localization Using Machine Learning in LoRa Networks

论文作者

Anjum, Mahnoor, Khan, Muhammad Abdullah, Hassan, Syed Ali, Mahmood, Aamir, Qureshi, Hassaan Khaliq, Gidlund, Mikael

论文摘要

无线技术在我们的日常生活中渗透的规模,主要是由基于国际互联网(IoT)的智能城市触发的,它宣传了新颖的本地化和跟踪技术的可能性。最近,低功率广阔的区域网络(LPWAN)技术已成为一种解决方案,可为智能城市应用提供可扩展的无线连接。洛拉(Lora)就是一种提供能源效率和广泛覆盖范围的技术。本文探讨了智能机器学习技术的使用,例如支持向量机,样条模型,决策树和集合学习,用于接收的信号强度指标(RSSI)在洛拉网络中基于洛拉网络的范围,在两个不同的环境中收集的培训数据集:室内和室外。然后,使用合适的范围模型在研究环境中使用三重觉得进行实验评估定位和跟踪的准确性。后来,我们介绍了基于洛拉的定位系统(LPS)的准确性,并将其与现有的Zigbee,Wifi和基于蓝牙的解决方案进行比较。最后,我们讨论了独立于卫星的跟踪系统的挑战,并提出了未来的方向,以提高准确性并提供可行性。

The scale of wireless technologies penetration in our daily lives, primarily triggered by the Internet-of-things (IoT)-based smart cities, is beaconing the possibilities of novel localization and tracking techniques. Recently, low-power wide-area network (LPWAN) technologies have emerged as a solution to offer scalable wireless connectivity for smart city applications. LoRa is one such technology that provides energy efficiency and wide-area coverage. This article explores the use of intelligent machine learning techniques, such as support vector machines, spline models, decision trees, and ensemble learning, for received signal strength indicator (RSSI)-based ranging in LoRa networks, on a training dataset collected in two different environments: indoors and outdoors. The suitable ranging model is then used to experimentally evaluate the accuracy of localization and tracking using trilateration in the studied environments. Later, we present the accuracy of LoRa-based positioning system (LPS) and compare it with the existing ZigBee, WiFi, and Bluetooth-based solutions. In the end, we discuss the challenges of satellite-independent tracking systems and propose future directions to improve accuracy and provide deployment feasibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源