论文标题

正式对正交对通过单一表示和共同学

Formal Orthogonal Pairs via Monomial Representations and Cohomology

论文作者

Goldberger, Assaf, Kotsireas, Ilias

论文摘要

正式的正交对是一对$(a,b)符号矩形矩阵,以便$ ab^t = 0 $。它可以应用于Hadamard和称重矩阵的构造。在本文中,我们介绍了一种构建此类对的系统方法。我们的方法涉及代表理论和群体的共同体。正交性属性是某些共同体学组之间非变化图的结果。该结构与关联方案和(加权)相干配置的理论有很强的联系。我们的技术也能够产生(反)友好对。给出了少数例子。

A Formal Orthogonal Pair is a pair $(A,B)$ of symbolic rectangular matrices such that $AB^T=0$. It can be applied for the construction of Hadamard and Weighing matrices. In this paper we introduce a systematic way for constructing such pairs. Our method involves Representation Theory and Group Cohomology. The orthogonality property is a consequence of non-vanishing maps between certain cohomology groups. This construction has strong connections to the theory of Association Schemes and (weighted) Coherent Configurations. Our techniques are also capable for producing (anti-) amicable pairs. A handful of examples are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源