论文标题

深层语言表示中可分开的流形的出现

Emergence of Separable Manifolds in Deep Language Representations

论文作者

Mamou, Jonathan, Le, Hang, Del Rio, Miguel, Stephenson, Cory, Tang, Hanlin, Kim, Yoon, Chung, SueYeon

论文摘要

深度神经网络(DNN)在解决各种认知方式的感知任务方面表现出了很多经验成功。尽管它们仅受到生物学大脑的启发,但最近的研究报告说,从任务优化的DNN和大脑中的神经种群中提取的表示之间有很大的相似性。 DNN随后已成为推断复杂认知功能基础的计算原理的流行模型类别,反过来,它们也成为一种自然测试,用于应用最初开发的方法来探测神经种群中的信息。在这项工作中,我们利用了均值场理论分析,这是一种从计算神经科学的最新技术,将特征表示的几何形状与类别的线性可分离性联系起来,以分析来自大规模上下文嵌入模型的语言表示。我们探索来自不同模型家族(Bert,Roberta,GPT等)的表示形式,并找到跨层深度(例如,词性词性标签的歧管)出现语言歧管的证据,尤其是在模棱两可的数据中(即具有多个语音标签的单词,或者具有多个语音类别的单词,或包括多个单词包括多个单词的单词)。此外,我们发现这些歧管中线性可分离性的出现是由歧管半径,维度和曼佛相关性的综合减少驱动的。

Deep neural networks (DNNs) have shown much empirical success in solving perceptual tasks across various cognitive modalities. While they are only loosely inspired by the biological brain, recent studies report considerable similarities between representations extracted from task-optimized DNNs and neural populations in the brain. DNNs have subsequently become a popular model class to infer computational principles underlying complex cognitive functions, and in turn, they have also emerged as a natural testbed for applying methods originally developed to probe information in neural populations. In this work, we utilize mean-field theoretic manifold analysis, a recent technique from computational neuroscience that connects geometry of feature representations with linear separability of classes, to analyze language representations from large-scale contextual embedding models. We explore representations from different model families (BERT, RoBERTa, GPT, etc.) and find evidence for emergence of linguistic manifolds across layer depth (e.g., manifolds for part-of-speech tags), especially in ambiguous data (i.e, words with multiple part-of-speech tags, or part-of-speech classes including many words). In addition, we find that the emergence of linear separability in these manifolds is driven by a combined reduction of manifolds' radius, dimensionality and inter-manifold correlations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源