论文标题

神经科学家的人工神经网络:底漆

Artificial neural networks for neuroscientists: A primer

论文作者

Yang, Guangyu Robert, Wang, Xiao-Jing

论文摘要

人工神经网络(ANN)是机器学习的重要工具,它引起了神经科学的越来越多的关注。除了提供有力的数据分析技术外,ANN还为神经科学家提供了一种新方法,以建立复杂行为,异质神经活动和电路连接的模型,以及以传统模型不设计的方式探索神经系统中的优化。在此教学底漆中,我们介绍了ANN,并演示了它们如何被绩效部署以研究神经科学问题。我们首先讨论ANN的基本概念和方法。然后,为了使这个数学框架更接近神经生物学,我们详细介绍了如何自定义ANN的分析,结构和学习,以更好地解决大脑研究中的广泛挑战。为了帮助读者获得动手实践的经验,该底漆伴随着Pytorch和Jupyter笔记本的教程风格代码,涵盖了主要主题。

Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help the readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源