论文标题

高维时间序列中的顺序变化点检测

Sequential change point detection in high dimensional time series

论文作者

Gösmann, Josua, Stoehr, Christina, Heiny, Johannes, Dette, Holger

论文摘要

近年来,高维数据中的变更点检测发现了很大的兴趣。大多数文献要么设计方法来进行回顾性分析,在统计推断开始时,整个样本已经可用,要么考虑在线检测方案,以控制平均时间直到误报。本文采用了不同的观点,并为在线方案开发了监视方案,其中高维数据依次到达,目标是在同一时间控制错误的概率在错误警报中的概率尽可能快地检测更改。我们开发了一个顺序的程序,能够检测具有空间和时间依赖性的持续观察到的高维时间序列的平均矢量变化。在该方法的大小和维度趋于无穷大的情况下,分析了该方法的统计特性。在这种情况下,结果表明,新的监测方案在无变化的零假设下具有渐近级α,并且在更改的替代性下,至少在高维平均值矢量的一个组成部分中是一致的。该方法基于一种新型的监视方案,用于一维数据,事实证明,该方案通常比通常使用的Cusum和Page-Cusum方法更强大,并且组件统计数据是由最大统计数据汇总的。为了分析我们的监测方案的渐近性能,我们证明,在给定间隔的布朗运动的范围是gumbel分布吸引的领域,这是对极端价值理论的独立兴趣的结果。新方法的有限样本特性通过仿真研究和数据示例分析来说明。

Change point detection in high dimensional data has found considerable interest in recent years. Most of the literature either designs methodology for a retrospective analysis, where the whole sample is already available when the statistical inference begins, or considers online detection schemes controlling the average time until a false alarm. This paper takes a different point of view and develops monitoring schemes for the online scenario, where high dimensional data arrives successively and the goal is to detect changes as fast as possible controlling at the same time the probability of a type I error of a false alarm. We develop a sequential procedure capable of detecting changes in the mean vector of a successively observed high dimensional time series with spatial and temporal dependence. The statistical properties of the method are analyzed in the case where both, thesample size and dimension tend to infinity. In this scenario, it is shown that the new monitoring scheme has asymptotic level alpha under the null hypothesis of no change and is consistent under the alternative of a change in at least one component of the high dimensional mean vector. The approach is based on a new type of monitoring scheme for one-dimensional data which turns out to be often more powerful than the usually used CUSUM and Page-CUSUM methods, and the component-wise statistics are aggregated by the maximum statistic. For the analysis of the asymptotic properties of our monitoring scheme we prove that the range of a Brownian motion on a given interval is in the domain of attraction of the Gumbel distribution, which is a result of independent interest in extreme value theory. The finite sample properties of the new methodology are illustrated by means of a simulation study and in the analysis of a data example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源