论文标题

有效的完全动态消除森林,可用于检测长路径和周期

Efficient fully dynamic elimination forests with applications to detecting long paths and cycles

论文作者

Chen, Jiehua, Czerwiński, Wojciech, Disser, Yann, Feldmann, Andreas Emil, Hermelin, Danny, Nadara, Wojciech, Pilipczuk, Michał, Pilipczuk, Marcin, Sorge, Manuel, Wróblewski, Bartłomiej, Zych-Pawlewicz, Anna

论文摘要

我们提出了一个数据结构,该数据结构最多最多$ d $,该数据结构在边缘插入和删除时会随着时间的流逝而修改,并保持了最佳的高度消除林。数据结构达到了最差的更新时间$ 2^{{\ cal o}(d^2)} $,它匹配静态fpt算法的运行时间中最著名的参数依赖关系,用于计算图形的超越。这改善了Dvo晚等。 [ESA 2014],对于某些非优质(即塔式指数)功能$ f $的同一问题,他就达到了同一问题的更新时间$ f(d)$。作为副产品,我们在$ d $ in $ d $ in $ d $ d $ d $ d^{{{\ cal o}(d)} $的最小障碍物尺寸上提高了已知上限。 作为应用程序,我们设计了新的完全动态的参数化数据结构,以检测一般图中的长路径和周期。更确切地说,对于固定参数$ k $和动态图$ g $,通过边缘插入和删除随时间修改的动态图$ g $,我们的数据结构保持了以下查询的答案: - $ g $是否包含$ k $顶点的简单路径? - $ g $至少在至少$ k $顶点上包含一个简单的周期? 在第一种情况下,数据结构达到了摊销更新时间$ 2^{{\ cal o}(k^2)} $。在第二种情况下,摊销的更新时间为$ 2^{{\ cal o}(k^4)} + {\ cal o}(k \ log n)$。在这两种情况下,我们都假设$ g $的边缘上的字典访问。

We present a data structure that in a dynamic graph of treedepth at most $d$, which is modified over time by edge insertions and deletions, maintains an optimum-height elimination forest. The data structure achieves worst-case update time $2^{{\cal O}(d^2)}$, which matches the best known parameter dependency in the running time of a static fpt algorithm for computing the treedepth of a graph. This improves a result of Dvořák et al. [ESA 2014], who for the same problem achieved update time $f(d)$ for some non-elementary (i.e. tower-exponential) function $f$. As a by-product, we improve known upper bounds on the sizes of minimal obstructions for having treedepth $d$ from doubly-exponential in $d$ to $d^{{\cal O}(d)}$. As applications, we design new fully dynamic parameterized data structures for detecting long paths and cycles in general graphs. More precisely, for a fixed parameter $k$ and a dynamic graph $G$, modified over time by edge insertions and deletions, our data structures maintain answers to the following queries: - Does $G$ contain a simple path on $k$ vertices? - Does $G$ contain a simple cycle on at least $k$ vertices? In the first case, the data structure achieves amortized update time $2^{{\cal O}(k^2)}$. In the second case, the amortized update time is $2^{{\cal O}(k^4)} + {\cal O}(k \log n)$. In both cases we assume access to a dictionary on the edges of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源