论文标题

量子理论的时空

Space-Time in Quantum Theory

论文作者

Capellmann, Herbert

论文摘要

量子理论类似于相对论,需要一个新的时空概念,该概念由通用常数施加。虽然轻度$ c $的速度不是无限的呼吁,要求重新定义大型和宇宙学尺度上的时空,但根据有限的,即非消失,通用常数$ h $的动作量化需要在很小的尺度上重新定义时空。最重要的是,“时间”的经典概念,因为一个常见的连续时间变量和自然在“时间”中连续演变,必须被不连续的量子过渡的无限多种过渡速率所取代。量子物理学的基本定律,换向关系和运动的量子方程是由Max Born对量子物理学基本原理的识别而产生的:{\ bf对自然的每种变化都对应于整数的作用量}。操作变量只能通过$ h $的整数值来更改,要求所有其他物理数量通过离散步骤“量子跳跃”更改。该原理的数学实现导致了换向关系和运动的量子方程。时空中“点”的概念失去了其身体意义;时间,位置的量子不确定性,就像任何其他物理数量一样,是量化作用的必要后果。

Quantum Theory, similar to Relativity Theory, requires a new concept of space-time, imposed by a universal constant. While velocity of light $c$ not being infinite calls for a redefinition of space-time on large and cosmological scales, quantization of action in terms of a finite, i.e. non vanishing, universal constant $h$ requires a redefinition of space-time on very small scales. Most importantly, the classical notion of "time", as one common continuous time variable and nature evolving continuously "in time", has to be replaced by an infinite manifold of transition rates for discontinuous quantum transitions. The fundamental laws of quantum physics, commutation relations and quantum equations of motion, resulted from Max Born's recognition of the basic principle of quantum physics: {\bf To each change in nature corresponds an integer number of quanta of action}. Action variables may only change by integer values of $h$, requiring all other physical quantities to change by discrete steps, "quantum jumps". The mathematical implementation of this principle led to commutation relations and quantum equations of motion. The notion of "point" in space-time looses its physical significance; quantum uncertainties of time, position, just as any other physical quantity, are necessary consequences of quantization of action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源