论文标题

在基于CNN的高光谱/SAR图像分类中整合全局空间特征

Integrating global spatial features in CNN based Hyperspectral/SAR imagery classification

论文作者

Zhang, Fan, Yan, MinChao, Hu, Chen, Ni, Jun, Ma, Fei

论文摘要

土地覆盖分类在遥感中发挥了重要作用,因为它可以在一个巨大的遥感图像中明智地识别事物以减少人类的工作。但是,许多分类方法都是基于像素功能或遥感图像的有限空间特征设计的,这限制了其方法的分类准确性和通用性。本文提出了一种新颖的方法,以获取遥感图像的信息,即地理纬度信息。此外,设计的双支分支卷积神经网络(CNN)分类方法结合了全局信息,以挖掘图像的像素特征。然后,两个神经网络的特征与另一个完全神经网络融合在一起,以实现遥感图像的分类。最后,使用两个遥感图像来验证我们方法的有效性,包括高光谱成像(HSI)和极化合成孔径雷达(POLSAR)成像。该方法的结果优于传统的单渠道卷积神经网络。

The land cover classification has played an important role in remote sensing because it can intelligently identify things in one huge remote sensing image to reduce the work of humans. However, a lot of classification methods are designed based on the pixel feature or limited spatial feature of the remote sensing image, which limits the classification accuracy and universality of their methods. This paper proposed a novel method to take into the information of remote sensing image, i.e., geographic latitude-longitude information. In addition, a dual-branch convolutional neural network (CNN) classification method is designed in combination with the global information to mine the pixel features of the image. Then, the features of the two neural networks are fused with another fully neural network to realize the classification of remote sensing images. Finally, two remote sensing images are used to verify the effectiveness of our method, including hyperspectral imaging (HSI) and polarimetric synthetic aperture radar (PolSAR) imagery. The result of the proposed method is superior to the traditional single-channel convolutional neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源