论文标题

远程基塔夫链的边缘状态:一项分析研究

Edge states of the long-range Kitaev chain: an analytical study

论文作者

Jäger, Simon B., Dell'Anna, Luca, Morigi, Giovanna

论文摘要

我们分析了具有远距离各向异性配对和隧穿的一维基塔伊夫模型的边缘状态的性质。假定隧道和配对分别用$α$和$β$的指数和$α,β> 1 $衰减。我们可以通过分析边缘模式的衰减来确定。我们表明,衰减是$α=β$的指数,当系数缩放隧道和配对项相等时。否则,该衰减在足够短的距离上是指数呈指数的,然后在渐近学处代数。我们表明,代数尾巴的指数取决于$α$和$β$之间的最小指数。我们的预测与通过精确的对角线化和文献中发现的数值结果一致。

We analyze the properties of the edge states of the one-dimensional Kitaev model with long-range anisotropic pairing and tunneling. Tunneling and pairing are assumed to decay algebraically with exponents $α$ and $β$, respectively, and $α,β>1$. We determine analytically the decay of the edges modes. We show that the decay is exponential for $α=β$ and when the coefficients scaling tunneling and pairing terms are equal. Otherwise, the decay is exponential at sufficiently short distances and then algebraic at the asymptotics. We show that the exponent of the algebraic tail is determined by the smallest exponent between $α$ and $β$. Our predictions are in agreement with numerical results found by exact diagonalization and in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源