论文标题

无签名的图形$η(g,σ)= | v(g)| -2m(g)+2c(g)-1 $

No signed graph with the nullity $η(G,σ)=|V(G)|-2m(G)+2c(G)-1$

论文作者

Lu, Yong, Wu, Jingwen

论文摘要

令$ g^σ=(g,σ)$为签名图,$ a(g,σ)$为其邻接矩阵。用$ m(g)$表示$ g $的匹配数。令$η(g,σ)$为$(g,σ)$的无效。他等人。 [根据等级的匹配数和循环数的边界,线性代数应用。 572(2019),273--291]证明了$$ | v(g)| -2m(g)-c(g)-c(g)\leqη(g,σ)\ leq | v(g)| -2m(g)+2c(g)+2c(g),$ c(g),$ c(g)$ c(g)$是$ g $的周期空间。到达下限或上限的签名图分别以同一论文为特征。在本文中,我们将证明没有签名的图形$ | v(g)| -2m(g)+2c(g)-1 $。我们还证明,对于给定的$ c(g)$,有无限签名的图形,$ | v(g)| -2m(g)+2c(g)+2c(g)-s,〜(0 \ leq s \ leq 3c(g),s \ neq1)$。

Let $G^σ=(G,σ)$ be a signed graph and $A(G,σ)$ be its adjacency matrix. Denote by $m(G)$ the matching number of $G$. Let $η(G,σ)$ be the nullity of $(G,σ)$. He et al. [Bounds for the matching number and cyclomatic number of a signed graph in terms of rank, Linear Algebra Appl. 572 (2019), 273--291] proved that $$|V(G)|-2m(G)-c(G)\leqη(G,σ)\leq |V(G)|-2m(G)+2c(G),$$ where $c(G)$ is the dimension of cycle space of $G$. Signed graphs reaching the lower bound or the upper bound are respectively characterized by the same paper. In this paper, we will prove that no signed graphs with nullity $|V(G)|-2m(G)+2c(G)-1$. We also prove that there are infinite signed graphs with nullity $|V(G)|-2m(G)+2c(G)-s,~(0\leq s\leq3c(G), s\neq1)$ for a given $c(G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源