论文标题

控制动态学习到级别的公平和偏见

Controlling Fairness and Bias in Dynamic Learning-to-Rank

论文作者

Morik, Marco, Singh, Ashudeep, Hong, Jessica, Joachims, Thorsten

论文摘要

排名是许多在线平台将用户与项目(例如新闻,产品,音乐,视频)匹配的主要接口。在这两面市场中,不仅用户从排名中获取实用程序,而且排名还决定了商品提供商(例如出版商,卖家,艺术家,工作室)的实用程序(例如,敞口,收入)。已经注意到,几乎所有学习算法算法都对用户的近视优化实用程序可能对项目提供商不公平。因此,我们提出了一种学习到级别的方法,用于明确执行基于绩效的公平性,可以保证对项目组(例如同一出版商的文章,同一位艺术家跟踪)。特别是,我们提出了一种学习算法,以确保摊销群体公平的概念,同时从隐式反馈数据中学习排名函数。该算法采用控制器的形式,该控制器集成了公平性和效用的无偏估计器,随着更多数据可用,两者都会动态适应两者。除了其严格的理论基础和融合保证外,我们从经验上发现该算法是高度实用和坚固的。

Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users, as done by virtually all learning-to-rank algorithms, can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源