论文标题
联合面部表现攻击检测
Federated Face Presentation Attack Detection
论文作者
论文摘要
面部表现攻击检测(FPAD)在现代面部识别管道中起着至关重要的作用。当通过不同输入分布和不同类型的欺骗攻击的面部图像训练时,可以获得良好概括的面部表现攻击检测模型。实际上,由于法律和隐私问题,数据所有者之间的培训数据(实际面部图像和欺骗图像)并未直接共享。在本文中,通过规避这一挑战的动机,我们提出了联合面部表现攻击检测(FEDPAD)框架。 FedPad同时利用了不同数据所有者可用的丰富FPAD信息,同时保留数据隐私。在提议的框架中,每个数据所有者(称为\ textit {数据中心})本地训练自己的FPAD模型。服务器通过从所有数据中心进行迭代汇总模型更新而无需访问每个数据中的私人数据来学习全局FPAD模型。一旦学习过的全局模型收敛,它将用于FPAD推理。我们介绍了实验环境,以评估所提出的FEDPAD框架并进行广泛的实验,以提供有关FPAD联合学习的各种见解。
Face presentation attack detection (fPAD) plays a critical role in the modern face recognition pipeline. A face presentation attack detection model with good generalization can be obtained when it is trained with face images from different input distributions and different types of spoof attacks. In reality, training data (both real face images and spoof images) are not directly shared between data owners due to legal and privacy issues. In this paper, with the motivation of circumventing this challenge, we propose Federated Face Presentation Attack Detection (FedPAD) framework. FedPAD simultaneously takes advantage of rich fPAD information available at different data owners while preserving data privacy. In the proposed framework, each data owner (referred to as \textit{data centers}) locally trains its own fPAD model. A server learns a global fPAD model by iteratively aggregating model updates from all data centers without accessing private data in each of them. Once the learned global model converges, it is used for fPAD inference. We introduce the experimental setting to evaluate the proposed FedPAD framework and carry out extensive experiments to provide various insights about federated learning for fPAD.