论文标题
自由效费和偏执和偏量量子旋转链具有多刺相互作用
Free fermionic and parafermionic quantum spin chains with multispin interactions
论文作者
论文摘要
我们介绍了一个新的$ z(n)$多刺量子链的新家族,带有自由度($ n = 2 $)或free-parafermionic($ n> 2 $)eigenspectrum。这些型号具有$(P+1)$相互作用的自旋($ p = 1,2,\ dots $),在$ z(2)$(ISING)的情况下为Hermitian,而非Hermitian则为$ n> 2 $。我们构建了一组相互通勤的费用,使我们可以根据订单$(p+1)$的复发关系产生的多项式的根源来得出特征力。在临界限制中,我们用某些高几何多项式$ {} _ {p+1} f_p $识别这些多项式。同样在临界状态下,我们计算出大量极限的基态能量,并验证它们是根据月桂菌高几何序列给出的。具有特殊耦合的模型是自动偶数的,在自dul点上显示了具有动态关键指数$ z_c = \ frac {p+1} {n} $的关键行为。
We introduce a new a family of $Z(N)$ multispins quantum chains with a free-fermionic ($N=2$) or free-parafermionic ($N>2$) eigenspectrum. The models have $(p+1)$ interacting spins ($p=1,2,\dots$), being Hermitian in the $Z(2)$ (Ising) case and non-Hermitian for $N>2$. We construct a set of mutually commuting charges that allows us to derive the eigenenergies in terms of the roots of polynomials generated by a recurrence relation of order $(p+1)$. In the critical limit we identify these polynomials with certain hypergeometric polynomials ${}_{p+1}F_p$. Also in the critical regime, we calculate the ground state energy in the bulk limit and verify that they are given in terms of the Lauricella hypergeometric series. The models with special couplings are self-dual and at the self-dual point show a critical behavior with dynamical critical exponent $z_c=\frac{p+1}{N}$.