论文标题

通过对称函数建模弹性球之间的多体相互作用

Modeling of many-body interactions between elastic spheres through symmetry functions

论文作者

Boattini, Emanuele, Bezem, Nina, Punnathanam, Sudeep N., Smallenburg, Frank, Filion, Laura

论文摘要

带有软壳的球形颗粒的简单模型已被证明可以自我组装成众多的晶体相甚至准晶体。但是,这些模型中的大多数都依赖于简单的成对相互作用,该相互作用通常仅在小变形的极限(即低密度)的极限下是有效的近似值。在这项工作中,我们考虑了一个多体而简单的模型,用于评估与球形壳的变形相关的弹性能。然而,最终的能量评估对于直接使用模拟相对昂贵。我们通过使用一组对称函数拟合电势来显着降低相关的数值成本。我们提出了一种选择一组合适的对称函数的方法,该函数以系统的方式捕获粒子环境的最相关特征。然后将拟合的相互作用电势用于蒙特卡洛模拟中,以二维绘制系统的相图。发现该系统既形成流体和六边形晶体。

Simple models for spherical particles with a soft shell have been shown to self-assemble into numerous crystal phases and even quasicrystals. However, most of these models rely on a simple pairwise interaction, which is usually a valid approximation only in the limit of small deformations, i.e. low densities. In this work, we consider a many-body yet simple model for the evaluation of the elastic energy associated with the deformation of a spherical shell. The resulting energy evaluation, however, is relatively expensive for direct use in simulations. We significantly reduce the associated numerical cost by fitting the potential using a set of symmetry functions. We propose a method for selecting a suitable set of symmetry functions that capture the most relevant features of the particle environment in a systematic manner. The fitted interaction potential is then used in Monte Carlo simulations to draw the phase diagram of the system in two dimensions. The system is found to form both a fluid and a hexagonal crystal phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源