论文标题

MAP指导的课程域适应性和语义夜间图像分割的不确定性感知评估

Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

论文作者

Sakaridis, Christos, Dai, Dengxin, Van Gool, Luc

论文摘要

我们通过在不使用夜间注释的情况下将白天模型调整为夜间,解决语义夜间图像细分的问题并改善最先进的问题。此外,我们设计了一个新的评估框架,以解决夜间图像中语义的实质性不确定性。我们的核心贡献是:1)课程框架,可以从白天到黑夜逐渐适应语义分割模型,直到一天中逐渐变暗的时间,从而利用参考图和黑暗图像的白天图像之间的跨度时间对应关系,以指导黑暗域中的标签推断; 2)一种新颖的不确定性感知注释和评估框架和语义分割的指标,包括以原则性方式评估人类识别能力的图像区域; 3)黑暗的苏黎世数据集,包括2416个未标记的夜间和2920个未标记的暮光图像,与他们的白天对应物以及一组201个夜间图像,并具有与我们的协议创建的精美像素级注释,这是我们的第一个基于我们的小说评估的基准标准。实验表明,我们的MAP指导课程适应性明显优于标准指标和我们的不确定性意识度量的夜间设置的最先进方法。此外,我们的不确定性感知评估表明,预测的选择性无效可以改善具有模棱两可内容的数据的结果,例如我们的基准和利润安全为导向的应用程序,涉及无效输入。

We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源