论文标题
考虑距离采样数据中的位置不确定性
Accounting for location uncertainty in distance sampling data
论文作者
论文摘要
生态学家使用距离抽样来估计动植物的丰度,同时纠正未发现的个体。通过设计,仅需要记录从样带到检测个体的距离来简化数据收集。与需要限制性假设并限制距离采样数据的传统基于设计的方法相比,基于模型的方法可以实现更广泛的应用,例如空间预测,推断物种抢劫关系,从优先采样的样本中进行无偏见的估计以及集成到多类型数据模型中。不幸的是,基于模型的方法需要每个检测到的个体的确切位置,以便将环境和栖息地特征纳入预测变量。我们通过包括一个仅记录距离时产生的位置不确定性的概率分布来修改基于模型的距离采样数据的方法。我们使用模拟实验测试并证明了我们的方法,并使用从美国堪萨斯州的Konza Prairie收集的距离采样数据对Dickcissels(Spiza Americana)的栖息地使用进行建模。我们的结果表明,忽略位置不确定性会导致系数估计和预测。但是,考虑到位置不确定性补救措施的问题,并导致可靠的推理和预测。像其他类型的测量误差一样,分层模型可以适应数据收集过程,从而实现可靠的推理。我们的方法是分析距离采样数据的重大进步,因为它可以补救位置不确定性的有害影响,并且只需要记录距离。反过来,这使历史距离采样数据集与现代数据收集和建模实践兼容。
Ecologists use distance sampling to estimate the abundance of plants and animals while correcting for undetected individuals. By design, data collection is simplified by requiring only the distances from a transect to the detected individuals be recorded. Compared to traditional design-based methods that require restrictive assumption and limit the use of distance sampling data, model-based approaches enable broader applications such as spatial prediction, inferring species-habitat relationships, unbiased estimation from preferentially sampled transects, and integration into multi-type data models. Unfortunately, model-based approaches require the exact location of each detected individual in order to incorporate environmental and habitat characteristics as predictor variables. We modified model-based methods for distance sampling data by including a probability distribution that accounts for location uncertainty generated when only the distances are recorded. We tested and demonstrated our method using a simulation experiment and by modeling the habitat use of Dickcissels (Spiza americana) using distance sampling data collected from the Konza Prairie in Kansas, USA. Our results showed that ignoring location uncertainty can result in biased coefficient estimates and predictions. However, accounting for location uncertainty remedies the issue and results in reliable inference and prediction. Like other types of measurement error, hierarchical models can accommodate the data collection process thereby enabling reliable inference. Our approach is a significant advancement for the analysis of distance sampling data because it remedies the deleterious effects of location uncertainty and requires only distances be recorded. In turn, this enables historical distance sampling data sets to be compatible with modern data collection and modeling practices.