论文标题
中间的内在密度和随机性
Intermediate Intrinsic Density and Randomness
论文作者
论文摘要
给定任何1随机集$ x $和(0,1)$中的任何$ r \,我们构建了一组内在的密度$ r $,可根据$ r \ oplus x $计算。对于几乎所有$ r $,该集合将是无法计算任何$ r $ -bernoulli随机集的固有密度$ r $ set的第一个已知示例。为了实现这一目标,我们将在}内形式化{\ tt中的{\ tt中},{\ tt}不可汇总的编码方法与固有密度良好。
Given any 1-random set $X$ and any $r\in(0,1)$, we construct a set of intrinsic density $r$ which is computable from $r\oplus X$. For almost all $r$, this set will be the first known example of an intrinsic density $r$ set which cannot compute any $r$-Bernoulli random set. To achieve this, we shall formalize the {\tt into} and {\tt within} noncomputable coding methods which work well with intrinsic density.