论文标题

希尔伯特模块化形式的光谱光环

Spectral halo for Hilbert modular forms

论文作者

Ren, Rufei, Zhao, Bin

论文摘要

让$ f $是一个完全真实的领域,$ p $是一个奇怪的素数,完全分为$ f $。我们证明,与$ f $ $ f $的确定四个代数相关的特征变化满足了以下属性:在重量空间的边界环上,特征变量是无限无限的许多连接组件的不连接,这些组件在重量空间中是有限的;在每个固定连接的组件上,$ u_ \ mathfrak {p} $ - 点的斜率与$ \ mathfrak {p} $ - 参数的$ p $ - ad-adic估值是由显式数字界的,对于所有PRIMES $ \ mathfrak {p} $ f $ p $ po $ p $ to $ p $。应用汉森的$ p $ - 辅助插值定理,我们能够将结果转移到希尔伯特模块化特征室。特别是,我们证明,在希尔伯特模块化特征值的每个不可还原部分上,当点向边界移动时,其$ u_p $ slope占零。就特征库而言,这完成了科尔曼 - 马祖尔的“光晕”猜想的证明。

Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space, the eigenvariety is a disjoint union of countably infinitely many connected components which are finite over the weight space; on each fixed connected component, the ratios between the $U_\mathfrak{p}$-slopes of points and the $p$-adic valuations of the $\mathfrak{p}$-parameters are bounded by explicit numbers, for all primes $\mathfrak{p}$ of $F$ over $p$. Applying Hansen's $p$-adic interpolation theorem, we are able to transfer our results to Hilbert modular eigenvarieties. In particular, we prove that on every irreducible component of Hilbert modular eigenvarieties, as a point moves towards the boundary, its $U_p$ slope goes to zero. In the case of eigencurves, this completes the proof of Coleman-Mazur's `halo' conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源