论文标题

迈向基于问题的推荐系统

Towards Question-based Recommender Systems

论文作者

Zou, Jie, Chen, Yifan, Kanoulas, Evangelos

论文摘要

近年来,基于对话和问题的推荐系统已引起人们的关注,使用户能够与该系统交谈并更好地控制建议。然而,与传统的推荐系统相比,该领域的研究仍然有限。在这项工作中,我们提出了一种基于问题的新型建议方法QREC,以通过回答自动构造和算法选择的问题来帮助用户交互方式。以前的对话推荐系统要求用户表达对项目或物品方面的偏好。取而代之的是,我们的模型要求用户表达对描述性项目功能的偏好。该模型首先是通过新颖的矩阵分解算法离线训练的,然后迭代通过基于用户答案的​​封闭形式解决方案在线更新用户和项目潜在因素。同时,我们的模型通过使用通用的二进制搜索来渗透潜在的用户信念和对项目的偏好,以学习最佳的问答策略,以便向用户提出一系列问题。我们的实验结果表明,我们提出的矩阵分解模型的表现优于传统的概率基质分解模型。此外,我们提出的QREC模型可以大大提高最先进的基线的性能,并且在冷启动的用户和项目建议的情况下也有效。

Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源