论文标题

FCN+RL:一个完全卷积的网络,然后是完善层,以脱机手写签名细分

FCN+RL: A Fully Convolutional Network followed by Refinement Layers to Offline Handwritten Signature Segmentation

论文作者

Junior, Celso A. M. Lopes, da Silva, Matheus Henrique M., Bezerra, Byron Leite Dantas, Fernandes, Bruno Jose Torres, Impedovo, Donato

论文摘要

尽管世俗,手写签名是大多数国家使用的最可靠的生物特征识别方法之一。在过去的十年中,技术在验证手写签名方面的应用不断发展,包括法医方面。某些因素,例如背景的复杂性和感兴趣区域的尺寸较小 - 标志像素 - 增加了目标任务的难度。使其具有挑战性的其他因素是手写签名中存在的各种变化,例如位置,墨水类型,颜色和笔类型以及中风的类型。在这项工作中,我们提出了一种方法,可以在身份证明文档上找到和提取手写签名像素的像素,而没有任何有关签名位置的信息。所使用的技术基于完全卷积的编码器网络,该网络与预测图像的Alpha通道相结合。实验结果表明,该技术在线条上输出具有更高忠诚度的干净签名,而不是传统的方法和保存与签名者拼写相关的特征。为了评估提案的质量,我们使用以下图像相似性指标:SSIM,SIFT和DICE系数。与基线系统相比,定性和定量结果显示出显着改善。

Although secular, handwritten signature is one of the most reliable biometric methods used by most countries. In the last ten years, the application of technology for verification of handwritten signatures has evolved strongly, including forensic aspects. Some factors, such as the complexity of the background and the small size of the region of interest - signature pixels - increase the difficulty of the targeting task. Other factors that make it challenging are the various variations present in handwritten signatures such as location, type of ink, color and type of pen, and the type of stroke. In this work, we propose an approach to locate and extract the pixels of handwritten signatures on identification documents, without any prior information on the location of the signatures. The technique used is based on a fully convolutional encoder-decoder network combined with a block of refinement layers for the alpha channel of the predicted image. The experimental results demonstrate that the technique outputs a clean signature with higher fidelity in the lines than the traditional approaches and preservation of the pertinent characteristics to the signer's spelling. To evaluate the quality of our proposal, we use the following image similarity metrics: SSIM, SIFT, and Dice Coefficient. The qualitative and quantitative results show a significant improvement in comparison with the baseline system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源