论文标题

$ f [x] $上的重量为零的射击式rota-baxter操作员

Injective Rota-Baxter operators of weight zero on $F[x]$

论文作者

Gubarev, Vsevolod, Perepechko, Alexander

论文摘要

Rota-baxter操作员对整体操作员的零件公式进行了积分的自然概括。 2015年,郑,郭和罗森克兰兹(Rosenkranz)猜想,在多项式代数$ \ mathbb {r} [x] $上,每个注射式rota rota-baxter ota ota-baxter运算符都是乘以非零多项式和正式集成的乘法的组成。我们在任何特征零字段上确认了这种猜想。此外,我们在这些运算符的模量空间上建立了一个索引的结构,并描述了一般模态二的加性结构。最后,我们对编成一个子集提供无限的传递作用。

Rota-Baxter operators present a natural generalisation of integration by parts formula for the integral operator. In 2015, Zheng, Guo, and Rosenkranz conjectured that every injective Rota-Baxter operator of weight zero on the polynomial algebra $\mathbb{R}[x]$ is a composition of the multiplication by a nonzero polynomial and a formal integration at some point. We confirm this conjecture over any field of characteristic zero. Moreover, we establish a structure of an ind-variety on the moduli space of these operators and describe an additive structure of generic modality two on it. Finally, we provide an infinitely transitive action on codimension one subsets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源