论文标题
在连续限制中的亲和kaon分布振幅
Pion and Kaon Distribution Amplitudes in the Continuum Limit
论文作者
论文摘要
我们使用大型摩肌有效理论(LAMET)提出了PION,KAON和$η_s$分布幅度的晶格QCD计算。我们的计算是使用三个合奏,具有2+1+1个口味的高度改进的交错夸克(HISQ),由MILC协作生成,分别为310 MeV pion质量,具有0.06、0.09和0.12 FM晶格间隔。我们在价夸克中使用三叶草费米昂的动作,并调整夸克质量,以匹配海洋中最轻的灯光和奇怪的质量。所得的晶格矩阵元件在非正规化的非依赖性动量 - 肌肉(RI/MOM)方案中非扰动地重新归一化,并将其外推到连续体。我们使用两种方法来提取介子分布振幅的$ x $依赖性:1)我们通过一环匹配的内核拟合了坐标空间中的重新归一化矩阵元件; 2)我们使用对伪晶格QCD数据训练的机器学习算法来对晶格数据进行预测。我们发现,在这些方法之间使用后一种方法在这些方法之间保持一致,从而使形状较差。两种方法都表明,随着夸克质量的增加,分布幅度变窄。我们的脉冲分布幅度比轻率组成夸克模型所预测的要广泛的分布,而我们的斜向分布的矩与以前的lattice-qCD使用操作员的生产扩展一致。
We present a lattice-QCD calculation of the pion, kaon and $η_s$ distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using three ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC collaboration, at 310 MeV pion mass with 0.06, 0.09 and 0.12 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and extrapolated to the continuum. We use two approaches to extract the $x$-dependence of the meson distribution amplitudes: 1) we fit the renormalized matrix elements in coordinate space to an assumed distribution form through a one-loop matching kernel; 2) we use a machine-learning algorithm trained on pseudo lattice-QCD data to make predictions on the lattice data. We found the results are consistent between these methods with the latter method giving a less smooth shape. Both approaches suggest that as the quark mass increases, the distribution amplitude becomes narrower. Our pion distribution amplitude has broader distribution than predicted by light-front constituent-quark model, and the moments of our pion distributions agree with previous lattice-QCD results using the operator production expansion.