论文标题
随机共享库网络的基本限制
Fundamental Limits of Stochastic Shared Caches Networks
论文作者
论文摘要
当用户共享有限数量的缓存状态以及用户和缓存之间的关联是随机的时,这项工作确定了随机编码的缓存的确切性能限制。在以下前提下,更平衡的用户对缓存关联的表现要比不平衡的相关性更好,我们的工作提供了对此类网络的平均性能的统计分析,并以封闭形式识别,即确切的最佳平均交付时间。为了洞悉此延迟,我们得出了易于计算的封闭形式的分析界限,这些分析界限被证明在大量$λ$的高速缓存状态下。在交付涉及$ k $用户的情况下,我们得出的结论是,由于随机性而引起的综合性能恶化 - 与众所周知的确定性统一情况相比 - 可以无限制,并且可以缩放为$θ\左(\ frac {\logλ} $ k =ω\ left(λ\logλ\右)$。为了减轻缓存负载不平衡的这种不利影响,我们考虑了各种负载平衡方法,并表明,使用接近性结合的负载平衡,并能够从附近的$ h $相邻的缓存中进行选择,上述缩放缩放降低到$θ\ weft(\ frac {\ frac {\ log(λ/ h)} and \ log \ log \ nir \ nir \ nir \ nir \ nir \,删除接近性约束,缩放率的缩放量$θ\ left(\ log \ log /logλ\ right)$。上述分析经过数值验证。
The work establishes the exact performance limits of stochastic coded caching when users share a bounded number of cache states, and when the association between users and caches, is random. Under the premise that more balanced user-to-cache associations perform better than unbalanced ones, our work provides a statistical analysis of the average performance of such networks, identifying in closed form, the exact optimal average delivery time. To insightfully capture this delay, we derive easy to compute closed-form analytical bounds that prove tight in the limit of a large number $Λ$ of cache states. In the scenario where delivery involves $K$ users, we conclude that the multiplicative performance deterioration due to randomness -- as compared to the well-known deterministic uniform case -- can be unbounded and can scale as $Θ\left( \frac{\log Λ}{\log \log Λ} \right)$ at $K=Θ\left(Λ\right)$, and that this scaling vanishes when $K=Ω\left(Λ\log Λ\right)$. To alleviate this adverse effect of cache-load imbalance, we consider various load balancing methods, and show that employing proximity-bounded load balancing with an ability to choose from $h$ neighboring caches, the aforementioned scaling reduces to $Θ\left(\frac{\log(Λ/ h)}{ \log \log(Λ/ h)} \right)$, while when the proximity constraint is removed, the scaling is of a much slower order $Θ\left( \log \log Λ\right)$. The above analysis is extensively validated numerically.