论文标题
使用深度学习检测在充电协调申请中检测撒谎的电动车辆
Detection of Lying Electrical Vehicles in Charging Coordination Application Using Deep Learning
论文作者
论文摘要
许多电动汽车(EV)的同时充电会强调分配系统,并可能在严重的情况下引起电网不稳定。避免此问题的最佳方法是通过收取协调性。这个想法是,电动汽车应报告数据(例如电池的最新电荷(SOC)),以运行一种机制以优先考虑充电请求,并选择在此时间插槽中应收取的电动汽车,并将其他请求推迟到将来的时间段。但是,电动汽车可能会撒谎并发送虚假数据以非法获得高收费优先级。在本文中,我们首先研究了这次攻击,以评估说谎的电动汽车的收益以及它们的行为如何影响诚实的电动汽车和充电协调机制的性能。我们的评估表明,与诚实的电动汽车相比,说谎的电动汽车有更大的机会获得收费,并且会降低充电协调机制的性能。然后,设计了使用深神经网络(DNN)的基于异常的检测器来识别说谎的EV。为此,我们首先创建了一个诚实的数据集,用于使用EV制造商揭示的实际驾驶轨迹和信息来对协调应用程序充电,然后我们还提出了许多攻击以创建恶意数据。我们培训和评估了两个模型,它们是多层感知器(MLP),使用此数据集和GRU检测器可以提供更好的结果。我们的评估表明,我们的检测器可以以高准确性和低误报速率检测谎言EV。
The simultaneous charging of many electric vehicles (EVs) stresses the distribution system and may cause grid instability in severe cases. The best way to avoid this problem is by charging coordination. The idea is that the EVs should report data (such as state-of-charge (SoC) of the battery) to run a mechanism to prioritize the charging requests and select the EVs that should charge during this time slot and defer other requests to future time slots. However, EVs may lie and send false data to receive high charging priority illegally. In this paper, we first study this attack to evaluate the gains of the lying EVs and how their behavior impacts the honest EVs and the performance of charging coordination mechanism. Our evaluations indicate that lying EVs have a greater chance to get charged comparing to honest EVs and they degrade the performance of the charging coordination mechanism. Then, an anomaly based detector that is using deep neural networks (DNN) is devised to identify the lying EVs. To do that, we first create an honest dataset for charging coordination application using real driving traces and information revealed by EV manufacturers, and then we also propose a number of attacks to create malicious data. We trained and evaluated two models, which are the multi-layer perceptron (MLP) and the gated recurrent unit (GRU) using this dataset and the GRU detector gives better results. Our evaluations indicate that our detector can detect lying EVs with high accuracy and low false positive rate.