论文标题
开放域对话代理的上下对话对话分类
Contextual Dialogue Act Classification for Open-Domain Conversational Agents
论文作者
论文摘要
在对话中对用户话语的一般意图进行分类,也称为对话法(DA),例如开放式问题,意见陈述或意见请求,是自然语言理解(NLU)的关键步骤。尽管DA分类已在人类对话中进行了广泛的研究,但对于新兴的开放域自动化对话剂而言,它尚未得到充分探索。此外,尽管在说话级别的DA分类方面取得了重大进展,但对对话话语的全面理解仍需要对话环境。另一个挑战是缺乏用于开放域的人机对话的可用标记数据。为了解决这些问题,我们提出了一种新颖的方法,即CDAC(上下文对话ACT分类器),这是一种简单而有效的深度学习方法,用于上下文对话ACT分类。具体来说,我们使用转移学习来调整接受人类对话训练的模型,以预测人机对话中的对话行为。为了调查我们方法的有效性,我们将模型训练在众所周知的人类对话数据集上,并将其微调以预测人机对话数据中的对话行为,这是Amazon Alexa 2018年竞赛的一部分。结果表明,CDAC模型在总机数据集上优于最新报告的最新最新的上下文DA分类结果,在总机数据集上优于最先进的基线。此外,我们的结果表明,在一小部分手动标记的人机对话样本中对CDAC模型进行微调,使CDAC可以在真实用户的对话中更准确地预测对话行为,这暗示了未来改进的有希望的方向。
Classifying the general intent of the user utterance in a conversation, also known as Dialogue Act (DA), e.g., open-ended question, statement of opinion, or request for an opinion, is a key step in Natural Language Understanding (NLU) for conversational agents. While DA classification has been extensively studied in human-human conversations, it has not been sufficiently explored for the emerging open-domain automated conversational agents. Moreover, despite significant advances in utterance-level DA classification, full understanding of dialogue utterances requires conversational context. Another challenge is the lack of available labeled data for open-domain human-machine conversations. To address these problems, we propose a novel method, CDAC (Contextual Dialogue Act Classifier), a simple yet effective deep learning approach for contextual dialogue act classification. Specifically, we use transfer learning to adapt models trained on human-human conversations to predict dialogue acts in human-machine dialogues. To investigate the effectiveness of our method, we train our model on the well-known Switchboard human-human dialogue dataset, and fine-tune it for predicting dialogue acts in human-machine conversation data, collected as part of the Amazon Alexa Prize 2018 competition. The results show that the CDAC model outperforms an utterance-level state of the art baseline by 8.0% on the Switchboard dataset, and is comparable to the latest reported state-of-the-art contextual DA classification results. Furthermore, our results show that fine-tuning the CDAC model on a small sample of manually labeled human-machine conversations allows CDAC to more accurately predict dialogue acts in real users' conversations, suggesting a promising direction for future improvements.