论文标题

通过从多个异质标记的数据集中学习,通用病变检测

Universal Lesion Detection by Learning from Multiple Heterogeneously Labeled Datasets

论文作者

Yan, Ke, Cai, Jinzheng, Harrison, Adam P., Jin, Dakai, Xiao, Jing, Lu, Le

论文摘要

病变检测是医学成像分析中的重要问题。以前的大多数工作都侧重于检测和细分专门的病变类别(例如肺结节)。但是,在临床实践中,放射科医生负责找到所有可能的异常类型。提出了普遍病变检测(ULD)的任务,以通过检测整个身体的各种病变来应对这一挑战。有多个具有不同标签完整性的异质标记的数据集:DeepLeSion,是各种类型的32,735个注释病变中最大的数据集,但更大的注释实例;以及几个完全标记的单型病变数据集,例如用于肺部结节的Luna和用于肝肿瘤的LITS。在这项工作中,我们提出了一个新颖的框架,以共同利用所有这些数据集以提高ULD的性能。首先,我们使用所有数据集学习了多头性多任务病变检测器,并在深层上生成病变建议。其次,通过一种嵌入匹配的方法来检索深度消失的注释,从而利用临床先验知识。最后,我们使用单型病变探测器的知识转移发现了可疑但未注重的病变。这样,可靠的正和负区域是从部分标记和未标记的图像中获得的,这些图像实际上被用来训练ULD。为了评估3D体积ULD的临床现实方案,我们在深层中完全注释了1071 CT子量。在平均灵敏度的指标中,我们的方法优于当前的最新方法。

Lesion detection is an important problem within medical imaging analysis. Most previous work focuses on detecting and segmenting a specialized category of lesions (e.g., lung nodules). However, in clinical practice, radiologists are responsible for finding all possible types of anomalies. The task of universal lesion detection (ULD) was proposed to address this challenge by detecting a large variety of lesions from the whole body. There are multiple heterogeneously labeled datasets with varying label completeness: DeepLesion, the largest dataset of 32,735 annotated lesions of various types, but with even more missing annotation instances; and several fully-labeled single-type lesion datasets, such as LUNA for lung nodules and LiTS for liver tumors. In this work, we propose a novel framework to leverage all these datasets together to improve the performance of ULD. First, we learn a multi-head multi-task lesion detector using all datasets and generate lesion proposals on DeepLesion. Second, missing annotations in DeepLesion are retrieved by a new method of embedding matching that exploits clinical prior knowledge. Last, we discover suspicious but unannotated lesions using knowledge transfer from single-type lesion detectors. In this way, reliable positive and negative regions are obtained from partially-labeled and unlabeled images, which are effectively utilized to train ULD. To assess the clinically realistic protocol of 3D volumetric ULD, we fully annotated 1071 CT sub-volumes in DeepLesion. Our method outperforms the current state-of-the-art approach by 29% in the metric of average sensitivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源