论文标题

通过罗马总策略来主导两个图的直接产物

Dominating the direct product of two graphs through total Roman strategies

论文作者

Martinez, Abel Cabrera, Kuziak, Dorota, Peterin, Iztok, Yero, Ismael G.

论文摘要

给定一个没有孤立顶点的图形$ g $,$ g $的总罗马主导函数是一个函数$ f:v(g)\ rightarrow \ {0,1,1,2 \} $,使得每个带有标签0的顶点与带有标签2的顶点相邻,并且具有标签2的顶点,并且具有正面标签的阳性标签集,该标签的集合均与一个最小图的高度图表。 $ g $的总罗马统治号码$γ_{tr}(g)$是$ \ sum_ {v \ in V(g)} f(v)f(v)$的最小值值。在这项工作中,研究了直接产品$ g \ times h $的直接产品$ g \ times h $的总数。具体而言,给出了几种以上和下限的形状的关系,在$γ_{tr}(g \ times h)$和某些因子的经典统治参数之间。提出了直接产品图$ g \ times h $以$γ_{tr}(g \ times h)$实现较小的值($ \ le 7 $)$,并提供$γ_{tr}(g \ times h)$的精确值,同时考虑各种特定的直接产品类别。

Given a graph $G$ without isolated vertices, a total Roman dominating function for $G$ is a function $f : V(G)\rightarrow \{0,1,2\}$ such that every vertex with label 0 is adjacent to a vertex with label 2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number $γ_{tR}(G)$ of $G$ is the smallest possible value of $\sum_{v\in V(G)}f(v)$ among all total Roman dominating functions $f$. The total Roman domination number of the direct product $G\times H$ of the graphs $G$ and $H$ is studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between $γ_{tR}(G\times H)$ and some classical domination parameters for the factors are given. Characterizations of the direct product graphs $G\times H$ achieving small values ($\le 7$) for $γ_{tR}(G\times H)$ are presented, and exact values for $γ_{tR}(G\times H)$ are deduced, while considering various specific direct product classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源