论文标题
分子属性预测的多视图图神经网络
Multi-View Graph Neural Networks for Molecular Property Prediction
论文作者
论文摘要
分子特性预测的关键是产生分子的有意义表示。一种有希望的途径是通过图神经网络(GNN)利用分子图结构。众所周知,原子和键都显着影响分子的化学特性,因此表达模型应能够同时利用节点(原子)和边缘(键)信息。在此观察结果的指导下,我们提出了多视图图神经网络(MV-GNN),这是一种多视图消息传递体系结构,以实现对分子特性的更准确的预测。在MV-GNN中,我们介绍了共同的自我启动读数组成部分和分歧损失,以稳定训练过程。此读取组件还可以解释整个架构。我们通过提出一个交叉依赖的消息传递方案来增强MV-GNN的表达能力,从而增强了两种视图的信息通信,从而导致MV-GNN^交叉变体。最后,从理论上讲,我们在区分非同态图的角度证明了两个模型的表现力。广泛的实验表明,MV-GNN模型在各种具有挑战性的基准上实现了比最先进模型的表现出色。同时,节点重要性的可视化结果与先验知识一致,这证实了MV-GNN模型的可解释性能力。
The crux of molecular property prediction is to generate meaningful representations of the molecules. One promising route is to exploit the molecular graph structure through Graph Neural Networks (GNNs). It is well known that both atoms and bonds significantly affect the chemical properties of a molecule, so an expressive model shall be able to exploit both node (atom) and edge (bond) information simultaneously. Guided by this observation, we present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture to enable more accurate predictions of molecular properties. In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process. This readout component also renders the whole architecture interpretable. We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme that enhances information communication of the two views, which results in the MV-GNN^cross variant. Lastly, we theoretically justify the expressiveness of the two proposed models in terms of distinguishing non-isomorphism graphs. Extensive experiments demonstrate that MV-GNN models achieve remarkably superior performance over the state-of-the-art models on a variety of challenging benchmarks. Meanwhile, visualization results of the node importance are consistent with prior knowledge, which confirms the interpretability power of MV-GNN models.