论文标题
具有基于交叉验证的流行模型的遗传算法,并应用于Algeria中Covid-19的早期扩散
Genetic algorithm with cross validation-based epidemic model and application to early diffusion of COVID-19 in Algeria
论文作者
论文摘要
提出了一种使用遗传算法和交叉验证方法优化的动态流行模型来克服过度拟合问题。应用交叉验证过程,以便将可用的数据分为用于适合算法参数的训练子集,以及用于验证的较小子集。在将其应用于阿尔及利亚之前,该过程已在意大利,西班牙,德国和韩国的国家进行了测试。有趣的是,我们的研究揭示了训练样本的大小与遗传算法所需的世代数量之间的反比关系。此外,这项工作中提出的增强的隔室模型被证明是估计易感人群中关键流行参数和不可消除的无症状感染部分的可靠工具,以建立现实的现实播放和预测流行病的进化。该模型被用来研究2月25日至2020年5月24日之间阿尔及利亚的共同爆发动态。爆发的三个月后,5月24日的基本复制数量和有效的繁殖数量为3.78(95%CI 3.033-4.53)和0.651 CI 3.033-4.53)和0.65%(95%CI 0.53391.761)。还计算了疾病发生率,CFR和IFR。为了这项研究而开发的数值程序可以公开访问以供繁殖和进一步使用。
A dynamical epidemic model optimized using genetic algorithm and cross validation method to overcome the overfitting problem is proposed. The cross validation procedure is applied so that available data are split into a training subset used to fit the algorithm's parameters, and a smaller subset used for validation. This process is tested on the countries of Italy, Spain, Germany and South Korea before being applied to Algeria. Interestingly, our study reveals an inverse relationship between the size of the training sample and the number of generations required in the genetic algorithm. Moreover, the enhanced compartmental model presented in this work is proven to be a reliable tool to estimate key epidemic parameters and non-measurable asymptomatic infected portion of the susceptible population in order to establish realistic nowcast and forecast of epidemic's evolution. The model is employed to study the COVID-19 outbreak dynamics in Algeria between February 25th and May 24th, 2020. The basic reproduction number and effective reproduction number on May 24th, after three months of the outbreak, are estimated to be 3.78 (95% CI 3.033-4.53) and 0.651 (95% CI 0.539-0.761) respectively. Disease incidence, CFR and IFR are also calculated. Numerical programs developed for the purpose of this study are made publicly accessible for reproduction and further use.