论文标题

3个manifolds的Quivers:信件,BPS状态和3D $ \ MATHCAL {N} $ = 2个理论

Quivers for 3-manifolds: the correspondence, BPS states, and 3d $\mathcal{N}$=2 theories

论文作者

Kucharski, Piotr

论文摘要

我们介绍并探索了Quivers和3个manifolds之间的关系,并具有结的拓扑结构。这个想法可以看作是调节与古科夫 - 曼诺尔斯库不变的对应的调整,也称为$ f_k $或$ \ hat {z} $)。除了将Quivers分配给$ t^{(2,2p+1)} $ torus结的补充外,我们还根据BPS光谱和3D $ \ MATHCAL {n} = 2 $理论的BPS光谱和一般结构来研究物理解释。我们还通过提出上述所有对象的$ t $变信息来迈出分类。

We introduce and explore the relation between quivers and 3-manifolds with the topology of the knot complement. This idea can be viewed as an adaptation of the knots-quivers correspondence to Gukov-Manolescu invariants of knot complements (also known as $F_K$ or $\hat{Z}$). Apart from assigning quivers to complements of $T^{(2,2p+1)}$ torus knots, we study the physical interpretation in terms of the BPS spectrum and general structure of 3d $\mathcal{N}=2$ theories associated to both sides of the correspondence. We also make a step towards categorification by proposing a $t$-deformation of all objects mentioned above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源