论文标题

随机离散凹入在与周期性黑姐妹的等边格上的功能

Random discrete concave functions on an equilateral lattice with periodic Hessians

论文作者

Narayanan, Hariharan

论文摘要

由与随机矩阵,利特伍德 - 富丽堂子系数和瓷砖的连接动机,我们研究了在等边晶格上的随机离散凹面功能。我们表明,这种功能具有固定的平均值$ -S $浓度的周期性Hessian,围绕二次函数。我们考虑等边晶格$ \ mathbb l $上的所有凹功能$ g $的集合,该元素被$ n \ mathbb l $移动时,具有定期的离散性hessian,带有$ n \ nathbb l $。我们添加了Hessian $ s $的凸二次;然后将总和与周期$ n \ mathbb l $进行周期性,并将其视为torus $ \ mathbb {t} t} _n:= \ frac {\ mathbb {Z} {Z} {n \ z n \ z n \ z { \ frac {\ mathbb {z}}} {n \ mathbb {z}} $,其Hessian由$ S $主导。由此产生的Semiconcave函数组形成了凸polytope $ p_n(s)$。 $ \ ell_ \ infty $ $ p_n(s)$的直径在下面由$ c(s)n^2 $限制,其中$ c(s)$仅取决于$ s $。我们的主要结果是,在某些条件下,例如在$ s_0 = s_1 \ leq s_2 $的情况下,对于任何$ε> 0,$,我们有$ \ lim_ {n \ rightarrow 0} \ mathbb {p} \ weft [\ | 0 $$如果$ g $是从$ p_n(s)$的统一度量中取样的。 p_n(s)$中的每个$ g \对应于一种蜂窝。我们也获得了这些结果的浓度结果。

Motivated by connections to random matrices, Littlewood-Richardson coefficients and tilings, we study random discrete concave functions on an equilateral lattice. We show that such functions having a periodic Hessian of a fixed average value $- s$ concentrate around a quadratic function. We consider the set of all concave functions $g$ on an equilateral lattice $\mathbb L$ that when shifted by an element of $n \mathbb L$ have a periodic discrete Hessian, with period $n \mathbb L$. We add a convex quadratic of Hessian $s$; the sum is then periodic with period $n \mathbb L$, and view this as a mean zero function $g$ on the set of vertices $V(\mathbb{T}_n)$ of a torus $\mathbb{T}_n := \frac{\mathbb{Z}}{n\mathbb{Z}}\times \frac{\mathbb{Z}}{n\mathbb{Z}}$ whose Hessian is dominated by $s$. The resulting set of semiconcave functions forms a convex polytope $P_n(s)$. The $\ell_\infty$ diameter of $P_n(s)$ is bounded below by $c(s) n^2$, where $c(s)$ is a positive constant depending only on $s$. Our main result is that under certain conditions, that are met for example when $s_0 = s_1 \leq s_2$, for any $ε> 0,$ we have $$\lim_{n \rightarrow 0} \mathbb{P}\left[\|g\|_\infty > n^{\frac{7}{4} + ε}\right] = 0$$ if $g$ is sampled from the uniform measure on $P_n(s)$. Each $g \in P_n(s)$ corresponds to a kind of honeycomb. We obtain concentration results for these as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源