论文标题
对某些冯·诺伊曼代数的无限期望
Unbounded expectations to some von Neumann algebras
论文作者
论文摘要
对于任何具有 * - 自动形态的von neumann代数和任何离散的,可数的G组,我们在R上构建了B(H)的超弱密度子空间的基本映射在还原的产品Von Neumann algebra上,这与某些不错的关系相关性,并满足了一些不错的关系。在一个符合人群的情况下,我们的无限期望会变成对规范1的常见条件期望。
For any injective von Neumann algebra R and any discrete, countable group G, which acts by *-automorphisms on R, we construct an idempotent mapping of an ultra-weakly dense subspace of B(H) onto the reducerd crossed product von Neumann algebra, such that it is R-bimodular and satisfies some nice relations with respect to positivity. In the case of an amenable group our unbounded expectation turns into a usual conditional expectation of norm 1.