论文标题
精确预测基于电子健康记录数据的卷积神经网络急性肾脏损伤
Precisely Predicting Acute Kidney Injury with Convolutional Neural Network Based on Electronic Health Record Data
论文作者
论文摘要
急性肾脏损伤(AKI)的发生率通常发生在重症监护病房(ICU)患者中,尤其是在成年人中,这是影响短期和长期死亡率的独立危险因素。尽管近年来研究人员强调了AKI的早期预测,但现有模型的性能还不够精确。这项研究的目的是通过电子健康记录(EHR)数据的卷积神经网络准确预测AKI。这项研究中使用的数据集是两个公共电子健康记录(EHR)数据库:MIMIC-III和EICU数据库。在这项研究中,我们采用几种卷积神经网络模型来训练和测试我们的AKI预测因子,可以准确地预测,根据16个血液气体和人口统计学特征的最后测量,一名患者在ICU入院后是否会患有AKI。这项研究基于肾脏疾病改善了全球结果(KDIGO)定义的标准。我们的工作大大提高了AKI预测的精度,在MIMIC-III数据集上,最好的AUROC在EICU数据集上最高为0.988,两者在EICU数据集上的表现都优于最先进的预测变量。并且该预测指标中使用的输入向量的维度要比其他现有研究中使用的尺寸少得多。与现有的AKI预测变量相比,这项工作中的预测因子通过使用卷积神经网络体系结构和更简洁的输入向量可以极大地提高AKI的早期预测。对AKI的早期和精确的预测将为治疗的决定带来很大的好处,因此据信我们的工作是非常有用的临床应用。
The incidence of Acute Kidney Injury (AKI) commonly happens in the Intensive Care Unit (ICU) patients, especially in the adults, which is an independent risk factor affecting short-term and long-term mortality. Though researchers in recent years highlight the early prediction of AKI, the performance of existing models are not precise enough. The objective of this research is to precisely predict AKI by means of Convolutional Neural Network on Electronic Health Record (EHR) data. The data sets used in this research are two public Electronic Health Record (EHR) databases: MIMIC-III and eICU database. In this study, we take several Convolutional Neural Network models to train and test our AKI predictor, which can precisely predict whether a certain patient will suffer from AKI after admission in ICU according to the last measurements of the 16 blood gas and demographic features. The research is based on Kidney Disease Improving Global Outcomes (KDIGO) criteria for AKI definition. Our work greatly improves the AKI prediction precision, and the best AUROC is up to 0.988 on MIMIC-III data set and 0.936 on eICU data set, both of which outperform the state-of-art predictors. And the dimension of the input vector used in this predictor is much fewer than that used in other existing researches. Compared with the existing AKI predictors, the predictor in this work greatly improves the precision of early prediction of AKI by using the Convolutional Neural Network architecture and a more concise input vector. Early and precise prediction of AKI will bring much benefit to the decision of treatment, so it is believed that our work is a very helpful clinical application.