论文标题

实例可解释的多元时间表的时间网络

Instance Explainable Temporal Network For Multivariate Timeseries

论文作者

Madiraju, Naveen, Karimabadi, Homa

论文摘要

尽管深层网络已被广泛采用,但他们的缺点之一就是他们的黑盒本质。机器学习中的一个特别困难的问题是多元时间序列(MVT)分类。 MVT数据在许多应用中都会出现,并且由于传感器和物联网设备的爆炸性增长而变得越来越普遍。在这里,我们提出了一个新颖的网络(IETNET),该网络在每种推理实例的分类决策中标识了重要的渠道。此功能还可以识别和去除非预测性变量,否则将导致过度拟合和/或不准确的模型。 IETNET是一个端到端网络,将时间特征提取,可变选择和关节变量相互作用组合到单个学习框架中。 IETNET利用了时间特征的1D旋转,这是一种新的通道门层,用于使用注意力层的可变类分配来执行跨通道推理并执行分类目标。为了深入了解学习的时间特征和渠道,我们在时间和渠道上提取了关注图的关注图。该网络的生存能力通过N身体模拟和航天器传感器数据的多元时间序列数据证明了这一网络的可行性。

Although deep networks have been widely adopted, one of their shortcomings has been their blackbox nature. One particularly difficult problem in machine learning is multivariate time series (MVTS) classification. MVTS data arise in many applications and are becoming ever more pervasive due to explosive growth of sensors and IoT devices. Here, we propose a novel network (IETNet) that identifies the important channels in the classification decision for each instance of inference. This feature also enables identification and removal of non-predictive variables which would otherwise lead to overfit and/or inaccurate model. IETNet is an end-to-end network that combines temporal feature extraction, variable selection, and joint variable interaction into a single learning framework. IETNet utilizes an 1D convolutions for temporal features, a novel channel gate layer for variable-class assignment using an attention layer to perform cross channel reasoning and perform classification objective. To gain insight into the learned temporal features and channels, we extract region of interest attention map along both time and channels. The viability of this network is demonstrated through a multivariate time series data from N body simulations and spacecraft sensor data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源