论文标题

耦合的McKean-Vlasov随机微分方程与跳跃

Coupled McKean-Vlasov stochastic differential equations with jumps

论文作者

Qiao, Huijie

论文摘要

这项工作涉及一种耦合的McKean-Vlasov随机微分方程(简称MVSDE),并带有跳跃。首先,我们证明了这些耦合的MVSDE的叠加原理,并具有跳跃和非本地空间分布依赖于依赖的fokker-planck方程。由于叠加原理与跳跃耦合的MVSDE的弱解的适合性有关,因此我们给出一些条件以确保它。此后,我们构建了与这些耦合的MVSDE相关的空间分布的Markov过程。最后,研究了这些耦合的MVSD和跳跃的奇迹性。作为副产品,我们显示了具有跳跃的MVSDES类型的指数型成分。

This work concerns a type of coupled McKean-Vlasov stochastic differential equations (MVSDEs in short) with jumps. First, we prove superposition principles for these coupled MVSDEs with jumps and non-local space-distribution dependent Fokker-Planck equations. Since superposition principles are related to the well-posedness of weak solutions for coupled MVSDEs with jumps, then we give some conditions to assure it. After this, we construct space-distribution valued Markov processes associated with these coupled MVSDEs with jumps. Finally, the ergodicity of these coupled MVSDEs with jumps are investigated. As a by-product, we show the exponential ergodicity for a type of MVSDEs with jumps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源