论文标题

晶格核心夹板的非线性有限元分析

Nonlinear finite element analysis of lattice core sandwich plates

论文作者

Nampally, Praneeth, Karttunen, Anssi T., Reddy, JN

论文摘要

基于位移的几何非线性有限元模型是针对晶格核心夹心面板开发的,该晶格核心夹心面板以2-D等效单层(ESL),一阶剪切变形理论(FSDT)微极板为模型。非线性是由于板的中等大型造成的,该板是通过在微极性应变测量中包括von karman菌株而建模的。使用线性拉格朗加插值的弱形式盖金方法用于开发基于位移的有限元模型。选择性减少的集成用于消除剪切锁定和膜锁定。新型有限元模型用于研究网络核和金字塔核心夹心面板的非线性弯曲和线性无振动。对于2-D微极ESL-FSDT板理论,首次考虑了夹紧和自由边缘边界条件。目前的2-D有限元结果与晶格核心夹心面板的相应详细3D FE结果非常吻合。 2-D元素提供了计算成本效益的解决方案;在非线性弯曲示例中,2-D微极板所需的元素数为10^3阶,而对于相应的3-D模型,阶是10^5。

A displacement-based, geometrically nonlinear finite element model is developed for lattice core sandwich panels modeled as 2-D equivalent single-layer (ESL), first-order shear deformation theory (FSDT) micropolar plates. The nonlinearity is due to the moderate macrorotations of the plate which are modeled by including the von Karman strains in the micropolar strain measures. Weak form Galerkin method with linear Lagrange interpolations is used to develop the displacement-based finite element model. Selective reduced integration is used to eliminate shear locking and membrane locking. The novel finite element model is used to study the nonlinear bending and linear free vibrations of web-core and pyramid core sandwich panels. Clamped and free edge boundary conditions are considered for the first time for the 2-D micropolar ESL-FSDT plate theory. The present 2-D finite element results are in good agreement with the corresponding detailed 3-D FE results for the lattice core sandwich panels. The 2-D element provides computationally cost-effective solutions; in a nonlinear bending example, the number of elements required for the 2-D micropolar plate is of the order 10^3, whereas for the corresponding 3-D model the order is 10^5.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源