论文标题
对点击率预测的分层注意力网络的深刻兴趣
Deep Interest with Hierarchical Attention Network for Click-Through Rate Prediction
论文作者
论文摘要
深度兴趣网络(DIN)是一种最先进的模型,它使用注意机制从历史行为中捕获用户利益。用户兴趣直观地遵循层次模式,以便用户通常表现出从较高级别的兴趣,然后表现出较低级别的抽象。在注意网络中对这种兴趣层次结构进行建模可以从根本上改善用户行为的表示。因此,我们建议对DIN进行改进,以模拟任意利益层次结构:层次注意网络(DHAN)的深刻利益。在此模型中,在第一个注意力层上引入了多维层次结构,该结构是在一个单独的项目上进行的,随后的相同维度的关注层参与了构建的高级层次结构。为了启用多个维层次结构的建模,引入了扩展的机制,以捕获一个层次结构。因此,该设计使Dhan能够对不同的分层抽象进行不同的重要性,因此可以完全捕获不同维度的用户兴趣(例如类别,价格或品牌)。验证我们的模型,简化的DHAN适用于点击率(CTR)(CTR)的预测,并在三个公共数据集中具有两个级别的实验性结果,仅在两个级别的单位数据集中进行单级hierarchy hierarchy hierarchy hierarty yory files。它显示了DHAN的优越性,而DIN的AUC升高显着从12%到21%。 Dhan还与另一个最先进的模型深度兴趣进化网络(DIEN)进行了比较,该网络对时间兴趣进行了建模。简化的Dhan还比Dien的AUC略微升高从1.0%到1.7%。潜在的未来工作可能是Dhan和Dien的结合,以模拟时间和等级的利益。
Deep Interest Network (DIN) is a state-of-the-art model which uses attention mechanism to capture user interests from historical behaviors. User interests intuitively follow a hierarchical pattern such that users generally show interests from a higher-level then to a lower-level abstraction. Modeling such an interest hierarchy in an attention network can fundamentally improve the representation of user behaviors. We, therefore, propose an improvement over DIN to model arbitrary interest hierarchy: Deep Interest with Hierarchical Attention Network (DHAN). In this model, a multi-dimensional hierarchical structure is introduced on the first attention layer which attends to an individual item, and the subsequent attention layers in the same dimension attend to higher-level hierarchy built on top of the lower corresponding layers. To enable modeling of multiple dimensional hierarchies, an expanding mechanism is introduced to capture one to many hierarchies. This design enables DHAN to attend different importance to different hierarchical abstractions thus can fully capture user interests at different dimensions (e.g. category, price, or brand).To validate our model, a simplified DHAN has applied to Click-Through Rate (CTR) prediction and our experimental results on three public datasets with two levels of the one-dimensional hierarchy only by category. It shows the superiority of DHAN with significant AUC uplift from 12% to 21% over DIN. DHAN is also compared with another state-of-the-art model Deep Interest Evolution Network (DIEN), which models temporal interest. The simplified DHAN also gets slight AUC uplift from 1.0% to 1.7% over DIEN. A potential future work can be a combination of DHAN and DIEN to model both temporal and hierarchical interests.