论文标题
全球灵敏度分析知情模型的减少和选择适用于Valsalva机动模型
Global sensitivity analysis informed model reduction and selection applied to a Valsalva maneuver model
论文作者
论文摘要
在这项研究中,我们开发了一种通过全球灵敏度分析(GSA)方法告知模型减少和选择的方法。我们将这些技术应用于一个控制模型,该模型将收缩压和胸部组织压力数据作为输入,并预测对Valsalva操纵(VM)的心率。该研究根据SOBOL的指数(SI)进行了四种GSA方法,从而量化了参数对模型输出和心率数据之间差异的影响。 GSA方法包括标准标量SIS确定在研究的时间间隔内的平均参数影响以及分析参数如何影响时间随时间变化的三个时间变化的方法。随时间变化的方法包括一种新技术,称为有限的内存SI,使用移动窗口方法预测参数影响。使用有限的内存SIS,我们执行模型降低和选择,以分析对VM响应于VM的主动脉和颈动脉压力受体区域进行建模的必要性。我们将原始模型与三个系统减少的模型进行比较,包括(i)主动脉和颈动脉区域,(ii)仅主动脉区域,以及(iii)仅颈动脉区域。使用Akaike和贝叶斯信息标准定量进行模型选择,并通过比较神经系统预测进行定性。结果表明,有必要同时合并主动脉和颈动脉区域以建模VM。
In this study, we develop a methodology for model reduction and selection informed by global sensitivity analysis (GSA) methods. We apply these techniques to a control model that takes systolic blood pressure and thoracic tissue pressure data as inputs and predicts heart rate in response to the Valsalva maneuver (VM). The study compares four GSA methods based on Sobol' indices (SIs) quantifying the parameter influence on the difference between the model output and the heart rate data. The GSA methods include standard scalar SIs determining the average parameter influence over the time interval studied and three time-varying methods analyzing how parameter influence changes over time. The time-varying methods include a new technique, termed limited-memory SIs, predicting parameter influence using a moving window approach. Using the limited-memory SIs, we perform model reduction and selection to analyze the necessity of modeling both the aortic and carotid baroreceptor regions in response to the VM. We compare the original model to three systematically reduced models including (i) the aortic and carotid regions, (ii) the aortic region only, and (iii) the carotid region only. Model selection is done quantitatively using the Akaike and Bayesian Information Criteria and qualitatively by comparing the neurological predictions. Results show that it is necessary to incorporate both the aortic and carotid regions to model the VM.