论文标题

Neuro4Neuro:一种使用基于人群的大规模扩散成像的神经区分割的神经网络方法

Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging

论文作者

Li, Bo, de Groot, Marius, Steketee, Rebecca M. E., Meijboom, Rozanna, Smits, Marion, Vernooij, Meike W., Ikram, M. Arfan, Liu, Jiren, Niessen, Wiro J., Bron, Esther E.

论文摘要

白质(WM)微观结构的细微变化与正常的衰老和神经退行性变化有关。为了更详细地研究这些关联,非常重要的是,WM道可以通过脑扩散MRI进行准确且可重复的特征。此外,要在大型数据集中分析WM区域,在临床实践中,必须快速易应用的方法学至关重要。因此,这项工作提出了一种新的WM道分割方法:Neuro4Neuro,它能够使用卷积神经网络(CNN)直接从扩散张量图中提取WM道。该3D端到端方法经过培训,可以在大型基于人群的研究(n = 9752,1.5T MRI)的老龄化体中段25 WM区域。提出的方法显示出良好的分割性能和高可重现性,即高空间一致性(Cohen's Kappa,K = 0.72〜0.83)和小扫描响应特异性扩散度量(例如,分数各向异性:错误:错误= 1%〜5%)。所提出的方法的可重复性高于基于片段学的分割算法的可重复性,同时更快(0.5 s段段)。此外,我们表明该方法成功概括从外部痴呆数据集(n = 58,3T MRI)中进行扩散扫描。在两个原则实验中,我们将使用拟议方法获得的WM微结构与正常的老年人群中的年龄以及痴呆症同类中的疾病亚型相关联。与文献一致的结果,结果表明,微观结构组织的广泛降低,痴呆症亚型之间具有衰老和大量的小组微观结构差异。总之,我们提出了一种高度可再现和快速的WM段分割方法,该方法具有用于大规模研究和临床实践的潜力。

Subtle changes in white matter (WM) microstructure have been associated with normal aging and neurodegeneration. To study these associations in more detail, it is highly important that the WM tracts can be accurately and reproducibly characterized from brain diffusion MRI. In addition, to enable analysis of WM tracts in large datasets and in clinical practice it is essential to have methodology that is fast and easy to apply. This work therefore presents a new approach for WM tract segmentation: Neuro4Neuro, that is capable of direct extraction of WM tracts from diffusion tensor images using convolutional neural network (CNN). This 3D end-to-end method is trained to segment 25 WM tracts in aging individuals from a large population-based study (N=9752, 1.5T MRI). The proposed method showed good segmentation performance and high reproducibility, i.e., a high spatial agreement (Cohen's kappa, k = 0.72 ~ 0.83) and a low scan-rescan error in tract-specific diffusion measures (e.g., fractional anisotropy: error = 1% ~ 5%). The reproducibility of the proposed method was higher than that of a tractography-based segmentation algorithm, while being orders of magnitude faster (0.5s to segment one tract). In addition, we showed that the method successfully generalizes to diffusion scans from an external dementia dataset (N=58, 3T MRI). In two proof-of-principle experiments, we associated WM microstructure obtained using the proposed method with age in a normal elderly population, and with disease subtypes in a dementia cohort. In concordance with the literature, results showed a widespread reduction of microstructural organization with aging and substantial group-wise microstructure differences between dementia subtypes. In conclusion, we presented a highly reproducible and fast method for WM tract segmentation that has the potential of being used in large-scale studies and clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源