论文标题

带有RGB-D摄像头算法和深度学习协同作用的葡萄园自动导航的本地运动计划者

Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D Camera-Based Algorithm and Deep Learning Synergy

论文作者

Aghi, Diego, Mazzia, Vittorio, Chiaberge, Marcello

论文摘要

随着农业3.0和4.0的出现,研究人员越来越关注创新的智能农业和精确农业技术的发展,通过将自动化和机器人技术引入农业过程。自主农业现场机器一直在引起农民和行业的重大关注,以降低成本,人力工作量和所需的资源。然而,实现足够的自主导航能力需要同时合作不同的过程。本地化,映射和路径计划只是旨在为机器提供正确的技能集以在半结构和非结构化环境中运行的步骤。在这种情况下,本研究仅基于RGB-D摄像头,低范围硬件和双层控制算法,为葡萄园中的自主导航提供了低成本的本地运动计划者。第一种算法利用了差异图及其深度表示,以生成对机器人平台的比例控制。同时,基于表示和对照明变化的弹性的第二个备用算法,在第一块瞬时故障的情况下,可以控制机器。此外,由于系统的双重性质,在使用初始数据集对深度学习模型进行初步培训之后,两种算法之间的严格协同作用打开了利用来自该领域的新自动标记的新数据,以扩展现有的模型知识。在意大利北部地区的不同现场调查中,使用转移学习对机器学习算法进行了培训和测试,然后在不同的现场调查中进行了优化,以通过模型修剪和量化进行对设备的推理。最后,在相关环境中使用定制的机器人平台对整个系统进行了验证。

With the advent of agriculture 3.0 and 4.0, researchers are increasingly focusing on the development of innovative smart farming and precision agriculture technologies by introducing automation and robotics into the agricultural processes. Autonomous agricultural field machines have been gaining significant attention from farmers and industries to reduce costs, human workload, and required resources. Nevertheless, achieving sufficient autonomous navigation capabilities requires the simultaneous cooperation of different processes; localization, mapping, and path planning are just some of the steps that aim at providing to the machine the right set of skills to operate in semi-structured and unstructured environments. In this context, this study presents a low-cost local motion planner for autonomous navigation in vineyards based only on an RGB-D camera, low range hardware, and a dual layer control algorithm. The first algorithm exploits the disparity map and its depth representation to generate a proportional control for the robotic platform. Concurrently, a second back-up algorithm, based on representations learning and resilient to illumination variations, can take control of the machine in case of a momentaneous failure of the first block. Moreover, due to the double nature of the system, after initial training of the deep learning model with an initial dataset, the strict synergy between the two algorithms opens the possibility of exploiting new automatically labeled data, coming from the field, to extend the existing model knowledge. The machine learning algorithm has been trained and tested, using transfer learning, with acquired images during different field surveys in the North region of Italy and then optimized for on-device inference with model pruning and quantization. Finally, the overall system has been validated with a customized robot platform in the relevant environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源