论文标题

光谱波显式的Navier-Stokes方程,用于使用两相计算流体动力学求解器的波结构相互作用

Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers

论文作者

Li, Zhaobin, Bouscasse, Benjamin, Ducrozet, Guillaume, Gentaz, Lionel, Touzé, David Le, Ferrant, Pierre

论文摘要

本文提出了一种有效的潜力和粘性流动分解方法,用于使用单相势流波模型和两相计算流体动力学(CFD)求解器,用于波结构相互作用模拟。电势部分 - 代表入射波 - 用光谱波模型求解;粘性部分 - 表示入射波上的互补扰动 - 用CFD求解器求解。这种组合使潜在理论在水波上的效率和准确性以及两相CFD求解器在复杂流(波破裂,流动分离等)上的优势。分解策略称为光谱波显式纳维尔 - 斯托克斯方程(SWENSE),最初是针对单相CFD求解器的。首先,本文提出了两相CFD求解器的Swense方法的扩展。其次,提出了一种在CFD网格上使用高阶光谱(HOS)波模型获得的插值势流结果的准确有效方法。该方法能够减少插值速度场的发散误差,以满足CFD求解器的需求而无需再投入。在OpenFOAM中实施,这些方法通过三个令人信服的验证,验证和应用程序案例进行了测试,考虑了事件波传播,常规波动中的垂直圆柱上的高阶载荷以及常规波和不规则波的catenary锚腿系泊(平静)浮标。测试用例可以实现1.71至4.28之间的加速。波浪模型和插值方法将向公众发布。

This paper proposes an efficient potential and viscous flow decomposition method for wave-structure interaction simulation with single-phase potential flow wave models and two-phase Computational Fluid Dynamics (CFD) solvers. The potential part - represents the incident waves - is solved with spectral wave models; the viscous part - represents the complementary perturbation on the incident waves - is solved with the CFD solver. This combination keeps the efficiency and accuracy of potential theory on water waves and the advantage of two-phase CFD solvers on complex flows (wave breaking, flow separation, etc.). The decomposition strategy is called Spectral Wave Explicit Navier-Stokes Equations (SWENSE), originally proposed for single-phase CFD solvers. Firstly, this paper presents an extension of the SWENSE method for two-phase CFD solvers. Secondly, an accurate and efficient method to interpolate potential flow results obtained with the High Order Spectral (HOS) wave model on CFD mesh is proposed. The method is able to reduce the divergence error of the interpolated velocity field to meet the CFD solver's needs without reprojection. Implemented within OpenFOAM, these methods are tested by three convincing verification, validation and application cases, considering incident wave propagation, high-order loads on a vertical cylinder in regular waves, and a Catenary Anchor Leg Mooring (CALM) buoy in both regular and irregular waves. Speed-ups between 1.71 and 4.28 are achieved with the test cases. The wave models and the interpolation method are released open-source to the public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源