论文标题

动态的桃子koehler自力,惯性和辐射阻尼的正规脱位

Dynamic Peach-Koehler self-force, inertia, and radiation damping of a regularized dislocation

论文作者

Pellegrini, Yves-Patrick

论文摘要

计算弹性动力的桃红色力量,用于在连续的各向同性弹性弹性中与各向同性核心的全调节直脱位,以相对于剪切和压缩波的部分质量或脉冲函数的紧凑形式或冲动功能。该力既解释了动态辐射阻尼和惯性。对于亚音速或超音速速度,表达式无关紧要。将结果与PEIERLS-ESHELBY类型的平核位错的情况进行了比较,以从静止速度跳到恒定速度。在稳态极限中,必须用相关但不同的函数代替正规脱位的扁平核心函数的拉格朗日函数。但是,通过适当地定义正则位错宽度,可以完全匹配全批准和平核位错的力的稳态限制。

The elastodynamic Peach-Koehler force is computed for a fully-regularized straight dislocation with isotropic core in continuum isotropic elastic elasticity, in compact forms involving partial mass or impulsion functions relative to shear and compressional waves. The force accounts for both dynamic radiation damping and inertia. The expressions are valid indifferently for subsonic or supersonic velocities. Results are compared with the case of a flat-core dislocation of the Peierls-Eshelby type, for a motion of jump from rest to constant velocity. In the steady-state limit, the Lagrangian function relevant to expressing the force in the flat-core case must be replaced by a related but different function for the regularized dislocation. However, by suitably defining the regularizing dislocation width, the steady-state limits of the force for the fully-regularized and flat-core dislocations can be matched exactly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源