论文标题
高度准确的特殊正交方法,用于限制几何形状中的Stokesian粒子悬浮液
Highly accurate special quadrature methods for Stokesian particle suspensions in confined geometries
论文作者
论文摘要
边界积分方法非常适合复杂的几何形状问题,但需要特殊的正交方法来准确计算出出现的奇异和近乎奇异的层势。本文提出了一种边界积分方法,该方法可用于研究三维周期性stokes中刚性颗粒的运动。我们方法的核心是高度准确的特殊正交方法,该方法基于使用预先启动方案加速的膨胀(QBX)(QBX)的上采样正交和正交的组合。该方法用于棒状和球体颗粒,并带有管道或一对扁平壁给出的限制几何形状。提出并测试了特殊正交方法的参数选择策略。使用光谱Ewald(SE)快速求和方法计算周期性相互作用,该方法允许我们的方法在N网格点的O(n log n)时间以O(n log n)时间运行,假设几何对象的数量会增长,而网格点浓度则保持固定。
Boundary integral methods are highly suited for problems with complicated geometries, but require special quadrature methods to accurately compute the singular and nearly singular layer potentials that appear in them. This paper presents a boundary integral method that can be used to study the motion of rigid particles in three-dimensional periodic Stokes flow with confining walls. A centrepiece of our method is the highly accurate special quadrature method, which is based on a combination of upsampled quadrature and quadrature by expansion (QBX), accelerated using a precomputation scheme. The method is demonstrated for rodlike and spheroidal particles, with the confining geometry given by a pipe or a pair of flat walls. A parameter selection strategy for the special quadrature method is presented and tested. Periodic interactions are computed using the Spectral Ewald (SE) fast summation method, which allows our method to run in O(n log n) time for n grid points, assuming the number of geometrical objects grows while the grid point concentration is kept fixed.