论文标题
具有不对称输入的三细胞网络的稳态分叉
Steady-state bifurcations for three-cell networks with asymmetric inputs
论文作者
论文摘要
我们考虑具有非对称输入的均匀耦合细胞网络。我们获得了有关具有任何数量的单元格和任意数量的不对称输入的网络的Codimension-One稳态分叉的一般结果。这些结果仅依赖于网络矩阵特征值结构和网络同步子空间的存在,以及不存在。对于具有三细胞的网络,我们描述了每个同步子空间上用特征值注释的同步子空间的可能晶格。采用先前的结果,我们将破坏同步的稳态分叉进行分类,这些稳态分叉可能会在三细胞最小网络中具有一个,两个或六个不对称输入。
We consider homogeneous coupled cell networks with asymmetric inputs. We obtain general results concerning codimension-one steady-state bifurcations for networks with any number of cells and any number of asymmetric inputs. These results rely solely on the network adjacency matrices eigenvalue structure and the existence, or not, of network synchrony subspaces. For networks with three-cells, we describe the possible lattices of synchrony subspaces annotated with the eigenvalues on each synchrony subspace. Applying the previous results, we classify the synchrony-breaking steady-state bifurcations that can occur for three-cell minimal networks with one, two or six asymmetric inputs.