论文标题

那里有几个共济会?公制空间中的共识投票机制

How Many Freemasons Are There? The Consensus Voting Mechanism in Metric Spaces

论文作者

Suzuki, Mashbat, Vetta, Adrian

论文摘要

当接受该群体时,我们研究了一个社会群体的演变,这是通过共识或一致投票确定的。在每个时间段内,两名候选人申请会员资格,并且仅当所有当前小组成员同意时才选择一个候选人。我们应用了投票的空间理论,其中小组成员和候选人位于度量空间中,每个成员都对其最接近(最相似)的候选人进行投票。我们的兴趣集中在$ t $时间段之后的小组中的基数上。为了评估这一点,我们研究了在度量空间上投票的动态共识中固有的几何形状。这使我们能够开发一组技术,用于下限和上限一个组的预期基数。我们将这些方法专门用于二维度量空间。对于单位球,$ t $时间段后集团的预期基数为$θ(t^{1/8})$。相比之下,对于单位平方,预期的基数至少为$ω(\ ln t)$,但最多$ o(\ ln t \ cdot \ ln \ ln t)$。

We study the evolution of a social group when admission to the group is determined via consensus or unanimity voting. In each time period, two candidates apply for membership and a candidate is selected if and only if all the current group members agree. We apply the spatial theory of voting where group members and candidates are located in a metric space and each member votes for its closest (most similar) candidate. Our interest focuses on the expected cardinality of the group after $T$ time periods. To evaluate this we study the geometry inherent in dynamic consensus voting over a metric space. This allows us to develop a set of techniques for lower bounding and upper bounding the expected cardinality of a group. We specialize these methods for two-dimensional metric spaces. For the unit ball the expected cardinality of the group after $T$ time periods is $Θ(T^{1/8})$. In sharp contrast, for the unit square the expected cardinality is at least $Ω(\ln T)$ but at most $O(\ln T \cdot \ln\ln T )$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源