论文标题

ITV:通过车辆轨迹和道路环境数据推断出容易违规的位置

iTV: Inferring Traffic Violation-Prone Locations with Vehicle Trajectories and Road Environment Data

论文作者

Jiang, Zhihan, Chen, Longbiao, Zhou, Binbin, Huang, Jinchun, Xie, Tianqi, Fan, Xiaoliang, Wang, Cheng

论文摘要

诸如非法停车,非法转折和超速行动之类的交通违规已成为城市运输系统中最大的挑战之一,带来了交通拥堵,车祸和停车困难的潜在风险。为了最大程度地提高旨在减少交通违规行为的交通执法策略的效用和有效性,对于城市当局来说,推断该市易于交通违规的地点至关重要。因此,我们提出了一个低成本,全面和动态的框架,以根据大规模车辆轨迹数据和道路环境数据来推断城市中容易发生违规的位置。首先,我们通过匹配算法并提取关键驾驶行为,即转弯行为,停车行为和车辆速度来使轨迹数据归一化。其次,我们恢复了驾驶行为的时空环境,以获得相应的交通限制,例如没有停车,没有转弯和速度限制。将交通限制与驾驶行为匹配后,我们获得了交通违规分布。最后,我们提取交通违规行为的时空模式,并建立一个可视化系统,以展示可推断的易受交通违规位置。为了评估所提出方法的有效性,我们分别对从两个中国城市收集的大型现实世界GPS轨迹进行了广泛的研究。评估结果证实,拟议的框架会有效,有效地侵犯了容易发生违规的位置,从而为交通执法策略提供了全面的决策支持。

Traffic violations like illegal parking, illegal turning, and speeding have become one of the greatest challenges in urban transportation systems, bringing potential risks of traffic congestions, vehicle accidents, and parking difficulties. To maximize the utility and effectiveness of the traffic enforcement strategies aiming at reducing traffic violations, it is essential for urban authorities to infer the traffic violation-prone locations in the city. Therefore, we propose a low-cost, comprehensive, and dynamic framework to infer traffic violation-prone locations in cities based on the large-scale vehicle trajectory data and road environment data. Firstly, we normalize the trajectory data by map matching algorithms and extract key driving behaviors, i.e., turning behaviors, parking behaviors, and speeds of vehicles. Secondly, we restore spatiotemporal contexts of driving behaviors to get corresponding traffic restrictions such as no parking, no turning, and speed restrictions. After matching the traffic restrictions with driving behaviors, we get the traffic violation distribution. Finally, we extract the spatiotemporal patterns of traffic violations, and build a visualization system to showcase the inferred traffic violation-prone locations. To evaluate the effectiveness of the proposed method, we conduct extensive studies on large-scale, real-world vehicle GPS trajectories collected from two Chinese cities, respectively. Evaluation results confirm that the proposed framework infers traffic violation-prone locations effectively and efficiently, providing comprehensive decision supports for traffic enforcement strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源