论文标题

基于统计学的方法,用于揭示实际传染趋势并纠正延迟引起的误差,在评估COVID-19大流行中

Statistically-based methodology for revealing real contagion trends and correcting delay-induced errors in the assessment of COVID-19 pandemic

论文作者

Contreras, Sebastián, Biron-Lattes, Juan Pablo, Villavicencio, H. Andrés, Medina-Ortiz, David, Llanovarced-Kawles, Nyna, Olivera-Nappa, Álvaro

论文摘要

Covid-19-大流行在时间尺度上重塑了我们的世界,比我们能理解的要短得多。 SARS-COV-2的特殊性,例如其在表面上的持久性以及对Covid-19的治疗方法或疫苗缺乏治疗方法,已促使当局采用限制性政策来控制其扩散。随着数据推动了这种全球偶然性中的大多数决策,它们的质量对于决策者来说是一个关键的变量,因此应仔细策划。在这项工作中,我们分析了典型报道的流行病学变量和用于诊断的常规测试的错误来源,以及它们对我们对Covid-19的理解的影响。我们解决了新病例的报告中存在不同的延迟,这是由于病毒的孵育时间和测试诊断时间间隙引起的,以及与用于诊断Covid-19的测试的灵敏度/特异性有关的其他错误源。使用基于统计的算法,我们对案例进行时间重新分类,以避免延迟引起的错误,建立在有效发生传染的当天中心的新的流行病学曲线。在没有直接测试的情况下,我们还可以从统计学上增强出院/恢复临床标准的鲁棒性,这通常是非第一世界国家的情况,在这种情况下,有限的测试能力完全专门用于评估新病例。最后,我们应用了我们的方法来评估智利大流行通过有效的繁殖编号$ r_t $的演变,从而确定了数据误导政府行动的不同时刻。在此过程中,我们旨在提高公众对流行病学建模和预测的适当数据报告和处理协议的需求。

COVID-19 pandemic has reshaped our world in a timescale much shorter than what we can understand. Particularities of SARS-CoV-2, such as its persistence in surfaces and the lack of a curative treatment or vaccine against COVID-19, have pushed authorities to apply restrictive policies to control its spreading. As data drove most of the decisions made in this global contingency, their quality is a critical variable for decision-making actors, and therefore should be carefully curated. In this work, we analyze the sources of error in typically reported epidemiological variables and usual tests used for diagnosis, and their impact on our understanding of COVID-19 spreading dynamics. We address the existence of different delays in the report of new cases, induced by the incubation time of the virus and testing-diagnosis time gaps, and other error sources related to the sensitivity/specificity of the tests used to diagnose COVID-19. Using a statistically-based algorithm, we perform a temporal reclassification of cases to avoid delay-induced errors, building up new epidemiologic curves centered in the day where the contagion effectively occurred. We also statistically enhance the robustness behind the discharge/recovery clinical criteria in the absence of a direct test, which is typically the case of non-first world countries, where the limited testing capabilities are fully dedicated to the evaluation of new cases. Finally, we applied our methodology to assess the evolution of the pandemic in Chile through the Effective Reproduction Number $R_t$, identifying different moments in which data was misleading governmental actions. In doing so, we aim to raise public awareness of the need for proper data reporting and processing protocols for epidemiological modelling and predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源