论文标题

哺乳动物中肺通风的异形缩放的起源

The origin of the allometric scaling of lung ventilation in mammals

论文作者

Noël, Frédérique, Karamaoun, Cyril, Dempsey, Jerome A., Mauroy, Benjamin

论文摘要

最近已经为人类开发了一种最佳通风控制模型。该模型强调了对流与呼吸气体扩散运输之间过渡之间定位的重要性。该本地化决定了应如何控制通风,以最大程度地减少其在任何代谢状态下的能量成本。我们基于所有哺乳动物肺共享的核心形态特征以及文献中的异量级缩放,将此模型推广到任何哺乳动物。由于通风的主要能量成本与对流运输有关,因此我们证明,对于所有哺乳动物,从对流运输到扩散运输的转变的定位在保持肺功能的同时保持低廉的成本方面至关重要。我们的模型首次预测了这种过渡的定位,以最大程度地减少通风成本,具体取决于哺乳动物质量和代谢方案。从这个最佳定位中,我们能够以任何代谢率预测潮汐体积和呼吸速率的异形缩放定律。我们为三种常见的代谢率(基础,田间和最大)运行了模型,并表明我们的预测在文献中可以准确地实验数据。我们的分析支持以下假设:哺乳动物的潮汐体积和以给定代谢率的呼吸速率的哺乳动物缩放定律是由哺乳动物肺和呼吸天然气转运的物理过程共享的一些核心几何特征驱动的。

A model of optimal control of ventilation has recently been developed for humans. This model highlights the importance of the localization of the transition between a convective and a diffusive transport of respiratory gas. This localization determines how ventilation should be controlled in order to minimize its energetic cost at any metabolic regime. We generalized this model to any mammal, based on the core morphometric characteristics shared by all mammalian lungs and on their allometric scaling from the literature. Since the main energetic costs of ventilation are related to convective transport, we prove that, for all mammals, the localization of the shift from a convective transport to a diffusive transport plays a critical role on keeping this cost low while fulfilling the lung function. Our model predicts for the first time the localization of this transition in order to minimize the energetic cost of ventilation, depending on mammal mass and metabolic regime. From this optimal localization, we are able to predict allometric scaling laws for both tidal volumes and breathing rates, at any metabolic rate. We ran our model for the three common metabolic rates -- basal, field and maximal -- and showed that our predictions reproduce accurately experimental data available in the literature. Our analysis supports the hypothesis that mammals allometric scaling laws of tidal volumes and breathing rates at a given metabolic rate are driven by a few core geometrical characteristics shared by mammalian lungs and by the physical processes of respiratory gas transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源