论文标题
与设备无关的量子密钥分布率和修订后的Peres猜想的上限
Upper bounds on device-independent quantum key distribution rates and a revised Peres conjecture
论文作者
论文摘要
独立于设备的量子密钥分布(DIQKD)是量子加密中最具挑战性的任务之一。协议及其安全性是基于贝尔不平等的存在以及通过测量纠缠状态来侵犯它们的能力。我们以两种不同的方式研究了DIQKD协议所需的纠缠。我们的第一个贡献是,就违反不平等的行为而言,基于CHSH的DIQKD协议的关键率的上限推导了上限;这设定了具有给定违法行为的州可能的DI密钥提取率的上限。我们的上限改进了Kaur等人先前已知的界限。我们的第二个贡献是启动研究结合纠缠状态在diqkd中的作用。我们提出了一个修订后的佩雷斯(Peres)猜想,指出这种状态不能用作DIQKD的资源。我们通过证明Vertesi和Brunner发现的结合纠缠状态,即使可以证明DI随机性,也不能使用类似于基于CHSH的DIQKD协议的协议来生成键,从而为猜想提供了第一条证据。
Device-independent quantum key distribution (DIQKD) is one of the most challenging tasks in quantum cryptography. The protocols and their security are based on the existence of Bell inequalities and the ability to violate them by measuring entangled states. We study the entanglement needed for DIQKD protocols in two different ways. Our first contribution is the derivation of upper bounds on the key rates of CHSH-based DIQKD protocols in terms of the violation of the inequality; this sets an upper limit on the possible DI key extraction rate from states with a given violation. Our upper bound improves on the previously known bound of Kaur et al. Our second contribution is the initiation of the study of the role of bound entangled states in DIQKD. We present a revised Peres conjecture stating that such states cannot be used as a resource for DIQKD. We give a first piece of evidence for the conjecture by showing that the bound entangled state found by Vertesi and Brunner, even though it can certify DI randomness, cannot be used to produce a key using protocols analogous to the well-studied CHSH-based DIQKD protocol.