论文标题

$ d \ to4 $ einstein-gauss-bonnet重力及其他

$D\to4$ Einstein-Gauss-Bonnet Gravity and Beyond

论文作者

Easson, Damien A., Manton, Tucker, Svesko, Andrew

论文摘要

可以通过重新缩放高斯河网耦合常数,看似避免Lovelock定理来构建一种在四个时期维度中的“新颖”纯粹的爱因斯坦 - 加斯 - 骨重力理论。然而,最近,该模型的良好性受到质疑。在这里,我们应用了曼恩和罗斯首次使用的“维度正则化”技术,以将$ d \ to 2 $的一般相对性限制写入纯的爱因斯坦 - 高斯 - 邦纳特重力。由此产生的四维作用是一种特定的Horndeski重力理论,该理论通过在平坦的内部空间上通过Kaluza-Klein还原而匹配结果。研究了该四维理论的一些宇宙学解决方案。我们进一步使该技术适应了更高的曲率Lovelock重力理论,以及具有$α'$校正的低能量有效弦乐动作。关于$α'$校正的弦乐操作的$ d \ to4 $限制,我们发现我们还必须恢复dilaton以在四个维度上进行非单一动作。有趣的是,当保形重新恢复$φ$被解释为另一个Dilaton时,正则化弦乐动作似乎是协变量多加利利亚重力理论的特殊情况。

A `novel' pure theory of Einstein-Gauss-Bonnet gravity in four-spacetime dimensions can be constructed by rescaling the Gauss-Bonnet coupling constant, seemingly eluding Lovelock's theorem. Recently, however, the well-posedness of this model has been called into question. Here we apply a `dimensional regularization' technique, first used by Mann and Ross to write down a $D\to2$ limit of general relativity, to the case of pure Einstein-Gauss-Bonnet gravity. The resulting four-dimensional action is a particular Horndeski theory of gravity matching the result found via a Kaluza-Klein reduction over a flat internal space. Some cosmological solutions of this four-dimensional theory are examined. We further adapt the technique to higher curvature Lovelock theories of gravity, as well as a low-energy effective string action with an $α'$ correction. With respect to the $D\to4$ limit of the $α'$-corrected string action, we find we must also rescale the dilaton to have a non-singular action in four dimensions. Interestingly, when the conformal rescaling $Φ$ is interpreted as another dilaton, the regularized string action appears to be a special case of a covariant multi-Galileon theory of gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源